
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems Introduction

Mod01, Lecture 03
Module 3: OS Management Services

Welcome to module 3, in this module we will be looking at OS management services. What

is it that the OS need to manage? A OS is a layer which tries to help the CPU and the

application software to work and get the required services. So OS is basically a service layer.

It services the application software. It satisfies the needs of the application software by

getting whatever the application software wants executed on the hardware and so what is it,

what sort of services will the application layer need from the hardware and how does the

operating system basically handles them. This is very crucial for us to understand, because

the understanding of this will help us in understanding the information security part of

building an operating system. Many of the vulnerabilities come, because these interfaces are

not well understood either by the application software or by the operating system module and

because of this lacuna or whatever a gap in understanding the functionalities, the

vulnerabilities basically (())(1:25).

(Refer Slide Time: 1:26)

Now let us understand the first most important functionality of an operating system is process

management. What is a process; already I said a process is a program in execution. There can

be variety of processes, what you see on a mobile phone is actually at an interactive process.

It is actually a timeshared process. A process can also be that I submit and sometime later it

gets executed. This is called a batch job. So you submit it and tomorrow morning you come

and see whether it is done. This the basically happens on large supercomputing, high

performance computing environments where you do not talk to the system that is executing a

program one to one like, how do you talk to your laptop or your mobile phone or your

dextop, but you actually submit the program and over a period of time the program actually

gets executed and say within some reasonable amount of time the results come up came.

So this is basically called a batch job. A timeshared job is something that we do here where

there are many many processes executing on a system and your CPU is timeshared between

multiple of them and then there are other type of processes, which we need to understand

here is called a system task. A system task is different from a user task, when I execute a

program then it is a user program, but when we go and do some important functionalities, for

example, I go and say printf or scanf then it basically calls the system for help, because I as

say for example I as a hallo world program, we will not know how to go and print on the

screen, because I do not know what screen is there.

So I basically use that printf routine and that printf routine essentially calls the operating

system, which in turn calls the graphics adapter and there is a sequence of calls that go before

the hallo world appears on the screen, right. So this is very very important. So when we look

at process, there could be timeshared interactive processes, there could be batch processes

and more importantly, there is another category of process is called system task, which works

at higher privilege level.

Now when we want to execute a process again, I have covered this in great detail in the

information security 2 course. When I want to execute a process, I go and ask the operating

system say, I am a process, I have say 1 megabyte of code and I need say, half megabyte of

data, I have so many arrays, I have so many things. So give me this storage. So first the

operating system has to give you some memory where the process can be loaded, the data

etcetera can be loaded, after that we start executing this.

So a particular a every process will need certain resources in terms of CPU time, because I

need to execute the program, I need some amount of memory then I will write to do some IO

into (())(4:22) like printf and scanf from the keyboard and printf on the screen and I will also

try and do lot of fprintf and fscanf, I am using C language to basically explain this , I hope all

of you know C, if you do not know just get to know these commands. So I use fscanf and

fprintf to read and write from files.

So as a process I need lot of resources including CPU time, memory files, IO devices to

complete my task or accomplish my task and these resources are made available to the

process through the operating system and whenever the process completes then it returns

back the resources to the operating system. So the operating system one of the important

aspects of process management is for the operating system to provide CPU time to provide

memory files, IO devices etcetera.

The second important process management is to actually monitor and you know control the

execution of a process when you say suppose we compile C program and say, dot slash a dot

(())(5:28) press the enter. Now a process has to be created when process completes, it needs

to be deleted. So there something called a process creation and deletion and we can also

suspend a process and make it wait. So process suspension and once a suspended process I

want to bring it back, I can again revoke it back or what you call as process resumption. So

this is also operating system functionality while I mentioned earlier why should a process get

suspended? A process actually get suspended, because it is waiting for an IO operation to

complete and why should it get resume, after the (())(6:02) when will it get resumed after the

IO completes, it can basically resume.

So there is a provision of mechanisms for process synchronization and process

communication that is very very important. What you mean by process synchronization I

want to perform a synchronous IO. This is an example for a process synchronization and one

process wants to communicate to another process. So I could have inter-process

communication and we even within a process, one sub-routine wants to pass information to

another sub-routine; there is also intra-process communication that happens between different

modules of a given program.

(Refer Slide Time: 6:39)

Now we are also talking of shearing CPUs. What you mean by shearing a CPU? Today

programs can also be multithreaded. Thread is nothing but unit of execution. So instead of

one unit of execution running, I could have four units of execution running, right. So this is

called a multi-threaded program where each thread can execute concurrently without

depending on the another thread. So if I have some certain operations that could be

concurrently executed, I go to a multi-threaded system and say suppose I have four different

operations that could execute concurrently, I go to a multi-threaded system, which has four

threads and give one operation each to one of these threads and all the four can happen

concurrently. If we do not have a threaded architecture then these four operations has to

happen one after another.

So a multi-threaded architecture gives us very very good speed up or throughput. So if I have

a single threaded process in which I am using only one thread then there will be one program

counter, which basically specifies a location of the next instruction, but if I have multi-

threaded process, each of the multi-threaded process has one program counter each thread has

a program counter. So now when I look at a multi-threaded architecture. An architecture that

could execute more than one thread at a time. Now the operating systems responsibility is to

see that these program counters are handle properly and you know the processes are moving

in a dought (())(8:08) properly. So there is a lot of difference between having a single

threaded system verses a multi-threaded system and the process management accordingly

changes.

Now many of the security vulnerabilities come by the way why different threads actually

interact with each other and that needs to also be taken care of. So when you look at the

information security 2 course, there we have introduce the notion of what we called as call

gate (())(8:35) towards the end of these those lectures, which basically talks about multi-layer

security. So and many of these vulnerabilities actually happen when we switch from one

mode or one unit of execution to another unit of execution. It can be from one program to

another program and when we do this switching, the isolation between these two programs is

not so perfect and because of that lack of isolation some information of program one when it

switches to program when the CPU switches from program one to program two, some

information of program one can be leaked on to program two and that forms a very very

important aspect of information security.

So to finally conclude process management is responsible for creating and deleting both user

and system processes. So now we have making a distinction between what is a user process,

for example, the hallo world program is a user process, but the printf and the subsequent

execution that is happening important a system process. So that is how we can distinguish

very quickly between the user and system processes and the operating system is also

responsible for suspending and resuming processes, it also provides mechanisms for process

synchronization. It will also provide mechanisms for process communication and it also use

useful for handling what we called as deadlock. What is a dead lock?

Deadlock is nothing but a process P1 is waiting for a resource R1 which is currently held by

process P2, which in turn is waiting for a resource R2, which is held by process P1. So P1

wants R1 which is held by P2 which in needs R2 which is held by P1. So for P1 to complete

it needs R1, it has R2 with its and for P2 to complete it needs R2 and it has R1 with it. So

each of them are competing and so this is basically what we called as say deadlock and there

are the process (())(10:37) operating system should handle deadlocks.

(Refer Slide Time: 10:40)

The next important aspect of an operating system is to basically handle memory. Memory is a

very large array of words each with its own address and what do we store in memory? We

store lot of data that are basically sheared within data used by the CPU and also, basically

that are sheared between the CPU and the IO devices. We already mention the Notion of what

we called as direct memory access, wherein a peripheral can write directly into a memory

location and then the CPU can later read from that memory location.

So when we look at the operating systems role in memory management, it has to provide the

necessary memory that is needed by a particular process and in the case where we have a

notion virtual memory, the operating system can go and it has to go and setup certain paging

related or whatever the virtual memory related stuff and then it has to basically give those

memory to the respective process. So memory management is also covered a specially the

virtual memory setting up page tables etcetera and a segmentation. These are all covered,

there are very interesting lab exercises that have been given as part of information security 2

course, I advise you to go and look at that in greater detail.

So the operating system is responsible for giving memory to a process and it is also

responsible for getting back that memory and releasing it properly so that it can be used by

another process at some other later point of time. So space or memory management is vary

very important and there are two aspects of memory management, one is memory allocation

and the release of memory and handling, which part of the memory is allocated, which is not

allocated etcetera. The second part of memory and management is also to look at provision a

virtual memory. So every program assumes that it has 4GB RAM, but I could have only 4GB

RAM in the system and there could be 100s of processes that are shearing this.

So a notion virtual memory basically helps you in realizing that all the memory is given to a

particular process in terms of virtually. So there will be 100 process, but each process thinks

that the entire 4GB address spaces for it, which will not necessarily be the case, but the

operating system will give you that virtual feeling and importantly when a process completes

or when its resource is released, it has to be properly documented or it has to be properly

maintained so that it ((())(13:08) and it could be reused at a later stage.

(Refer Slide Time: 13:12)

Note that a file is the most visible component of operating system, anything that I store the

basic unit of information is called file and is a actually a logical storage unit and file gives

you an abstraction. So today I created this ppt file in another dextop then I sent it through an

email, somebody copied it and they have stored it in a dextop and now they have brought it

here. So this file is called module 3 dot ppt, right, but is the same module 3 dot ppt was there,

in my disc then it was there on my mail server then it came to the dextop of Benjamin here.

Benjamin is the staff, who is helping me in recording this lecture and then from there he

transform throughput (())(13:56) into this laptop.

So but the file has remain the same, but the way it is getting stored, it got stored in my

dextop, which is a Mack apple system and then the way it got stored in the mail server we do

not know how the mail server is configured (())(14:14) some other disc, the way it has got

stored in the studio and the way it is stored on the laptop, there all different discs, different

formats, but a file remains as a file from the user perspective, I just see module 3 dot ppt

everywhere right.

 So that is very very important and who takes care of this uniform view for the user though,

the way it is stored is different, the operating system uses that. So that is very very important

here and the operating system is responsible for the following activities in connection with

file management, creating a file, deleting a file, creating a directory, deleting a directory and

support of primitives, who are manipulating files and directories right, deleting a files

changing some permissions etcetera and then the most important thing is we need to map the

files on to the secondary storage and then we have to do file backup on stable non-volatile

storage media so that for our cable (())(15:11) purpose and retrieval purpose in case there is a

power break down etcetera. So these are all very important aspects of file management.

(Refer Slide Time: 15:20)

In addition there is something call the secondary storage management. What is a secondary

storage? The main storage is call or whatever called as a primary storage is basically the main

memory. A secondary storage is a system is the hard disc for example or it can be any even

online storage medium today, I could go drop box etcetera. So these are all secondary storage

for us. So one of the important thing with respective a disc, for example, the operating system

is responsible for the following activities in connection with managing a disc for example, an

hard disc.

Now the operating system has to maintain in a (())(15:11) completing about the free space

that is available there. So I want to store a file, I should know which space is free in the disc.

So this is what we call as free space management and then I have to there are so many free

space I have to allocate a particular space that is called storage allocation and then every time

I read or write from the disc.

Now this today we are looking at SSDs or solid state devices, but in olden days when they

look at you know mechanical discs, right then the head will be at some point and if there are

10 files, I would like to take that file, which is very close to the head (())(16:32) so that

quickly I can write it there. So I will decide on which file to be written at which point of time,

I in the sense the operating system. So the disc scheduling also becomes a very very

important part of secondary storage management by the operating system.

(Refer Slide Time: 16:48)

Now there something called IO system management, IO system management is that I have an

IO device that is trying to communicate with the CPU and how do we go about doing this. So

what is it for me to read from an IO device, first thing is I need to understand how I can talk

with the IO device, I means the CPU. Now there are 100s of IO devices in the market and all

of them are compatible with the current you know the windows or the Unix operating system.

They are compatible with it.

Now does this compatibility come? How are you able to access n number of peripherals here,

the reason is that there is a driver a software, which talks to the corresponding device

controller told you in the previous module that every peripheral will come with a peripheral

controller, disc comes with a controller, graphics card comes with a graphics card controller.

Now there is a peripheral and there is a hardware, which controls that peripheral and that

hardware is interface to the CPU through the bus.

Now what is a next step here? Now, the next step here is that somebody has to talk to that

controller and who is that somebody? It is the operating system, which part of the operating

system that is called a device driver. So the moment you inserts some device then

immediately into your system either say, windows or Linux then immediately says we are

trying to find out and install a device driver. So the device driver talks to the device controller

and then intern it will go and access the device controller will access the device and do the

necessary job. So and please note the IO system is much much much slower than the actual

CPU and so what we do is that as an when we read from that we buffers the inputs and the

outputs if we are going to write into a location. So we do that buffering to actually match the

speed right.

So when we look at IO systems one of the most important things is to have a buffer caching

system. Now a buffer caching system basically brings from disc some data and it is store in

the memory and it keeps as a cache. Now improper handling of the security of the buffer

cache can essentially lead to a information leakage, right as a process (())(19:13) would have

some confidential data on the disc, which is basically taken up and put it in the buffer cache

and then the process I completes, but the buffer cache is not erased, it is just an free less (())

(19:24) and so the next process can come and look at this buffer cache and try to get lot more

information about the password etcetera or anything there.

So handling this buffer caching system is very important from a security perspective and

there is also something called memory management of IO and there looking at you know the

caching looking at, what you call as pulling which is nothing but the overlapping of output of

one job with the input of IO including of others job. So this is also very very important. So

the memory management of IO, the IO system itself is very very crucial for the operating

system and so what the operating system today provides for handling IO system, it is general

device driver interface and I already explain what a device driver is and we also need these

drivers for multiple type of hardware’s that we use. So an operating system why we need a

generic device driver interface, because we have 1000s of peripherals that we could attach to

the different systems and so the drivers need to have a generic device driver interface.

(Refer Slide Time: 20:35)

Now we have already explained what is caching, but I will just quickly touch here, caching is

nothing but between two levels of storage in the storage hierarchy, the slower device when it

tries to interface to the faster device as caching mechanism built in the faster device so that

every time, I want to go and access a data I need not go to the slower device, but I could have

it from the faster device. So this is the notion of what we called as cache and the notion of

cache actually works, because programmers when they write a program implicitly follow, it is

not intentional, but it implicitly follows two important things called locality reference, one is

called special locality another is called temporary locality.

What is special locality? if I address data if I go and access data or instruction at address A

within the next few milliseconds, I will access something at the path (())(21:33) A plus delta

A. So when I am fetching address A, I will also fetch all the things around it so that next time

I need not go to the disc, but I can take it from the cache. Bring it means bring it where bring

and store it in the cache and I could access the cache at a later time. The another locality of

reference call temporary locality, which basically talks about I access a data at time t, the

probability that I will be accessing the data at time t plus delta t is very high, for example, I

initialize a variable before I use it.

So initialization is one access to the variable and immediately after that I start using that

variable I write into the variable or read from that variable. So this is an example so the way a

programmers mind work automatically resolves into what we called as the temporary (())

(22:17) and special locality of reference. So when I access an address A at time t probability

that I will access A at time t plus delta t is very high. The probability that I will access an

address very close to A in the next delta t time is also a very high and this makes caching very

very important aspect.

(Refer Slide Time: 22:37)

The next is next aspect of operating system that we need to talk about is the distributed

system. What do you mean by distributed system? You have multiple computers connected

there is nothing that they shear except that they are connected through a cable or what we call

as say, communication network. Now we need to program this. So let me say, I have 1000s of

such computers networked and now I have a job, which has thousand parts and each of these

parts can execute concurrently.

Now I need a mechanism by which I can take my job and split it up into those 1000s small

parts and allocate one part each to one of these process, they execute and then they

communicate and then they solve the problem. So this is basically called a distributed system

and the most crucial thing for a distributed system is to have a very high speed

interconnection network by which one system can talk to another.

So networking actually comes in here, in with the great detail (())(23:34). So networking is

not to connect two remote systems, but today networking plays a crucial role in building up

many of the super computers, wherein one processor gets connected to another processor to a

network stack. So the notion of distributed systems is very very important.

(Refer Slide Time: 23:51)

The other thing is that I need to manage the operating system by giving command. So lot of

people would have known command prompt is as a part of this course as we proceed, we will

also talk much more about commands, the terminal where many commands will also be

taught as a part of this course. Now, what is a command? A command is basically that to

create a file, to delete a file, to do IO or you know to access main memory, to access

secondary storage system, to create some poor protection in environment, I can also do

certain basically execute certain network commands through the command interpretation. So

there is a command line interpreter both for Unix which is called a shell a batch shell etcetera

and for windows, there is a command always.

So this command is basically an interpretation. What is an interpretation? So I have say 10

commands, an interpreter will take one command execute it then take the next command the

next command and execute it. A compiler will compile all the 10 commands and execute it in

one short. So there is a difference between an interpreter and a compiler. So the command is

always interpreter, in sense one command is taken, it is executed, then the next command

then the next command that why we call it as command interpretation here. We strongly

argue (())(25:02) to go and look at the command in a windows or the Linux system, terminal

in the Linux system and understand some of the popular commands or very effective or very

heavily used commands in the respective operating systems.

(Refer Slide Time: 25:17)

Now we will also define what do you mean by protection and what you mean by security?

Protection is something, which is very very internal to the system. We will talk about

protection in more detail as we go into the next module, but as far as this module is concern

please, understand that within a system I need to protect lot of things. What are the things we

will see in the next module but some sort of ensuring security within the system is called

protection. Protection mechanism involved to protect a system from outside that is basically

call security. Security is the defense of the system against internal and external attacks, okay.

So the internal attack is somebody comes and hacks a password internally and then you can

(())(25:58) and an external attack would be something like denial-of-service, can be worms,

viruses etcetera.

So the protection and security is basically employed at three different levels, first if we take

the operating system the Unix operating system, it has two levels of protection. First there is

an user ID then there is an user ID and the group ID put together will give you another

protection. So for a particular file there be a owner who has some permissions for it then that

owner can become belong to a group and that any member of that group will have some

permission on it and then you will have anybody else. So for every entity there is a way by

which I could create certain access rights for certain people or certain users by which I can

ensure both protection and security. So protection is internal threads between the modules and

security is external thread to the system.

(Refer Slide Time: 26:55)

 Why do we need to protect? I need to protect, because today let us take a mail server as big

as (())(27:00) say, Google server gmail server. Now if I go and do some fault on that and the

entire server stops, it essentially means there is denial-of-service to the entire mail users, say

millions or billions of users of Gmail, right. So so that is very very important. So one of the in

thing is that I need to protect my data from other programs which are trying to access it. I

need to protect processes from doing some illegal operation which will go and create (())

(27:31) for the other processes.

So there is a need to protect the program itself and there is also a need to protect this program

from going and doing something, which it should not do in the contest of another process. So

there is a intra-process protection and then inter-process protection that we need to take

around and this is very very important from an information security point of view. So we will

continue about security measures (())(27:56) in the next module. Thank you.

