
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems Introduction

Mod01, Lecture 04
Module 4: OS Security Issues

So welcome to module 4 that we have understood something about security and different

functionalities of the operating system. So the services that the operating system need to take

care and we concluded last module with security issues, we distinguish between protection

and security and in this module, we will talk more about OS security issues. Please,

understand that this course is essentially server and a network administration course for

security engineers. So we will emphasize more on the security aspects of operating system.

(Refer Slide Time: 0:49)

So typically how does an operating system protect itself? So the operating system will

basically give two modes of execution what we call as a dual mode. In a dual mode, there is

something call the user mode, in which the user process, the application software. We will do

some activities, right. So and basically in the user mode, a process which is a program in

execution when it is executing in the user mode, we will have restricted privileges, it cannot

go and touch certain parts of the operating system or it cannot go and touch certain part of the

memory. So it cannot go and change certain values and there is another mode, which we call

as the kernel mode wherein from the user mode we basically execute a system call and come

to kernel mode.

In the kernel mode there is more privilege. So then certain parts of the operating system can

be checked out. So the operating system, so it will be in two modes of execution when a user

process starts executing then it will be in the user mode. So that user process cannot come

and touch anything within the operating system, right and when certain important operations

have to be taken, which are very close to the hardware then there is a switch into the kernel

mode and in the kernel mode certain operations can happen, for example, let us take a very

simple hallo world program, some part of the program say, there is a printf statement there

are other statements other than the printf. All those things are basically executed in the user

mode and when I do a printf then there is a system call basically which will go and touch the

device driver of the monitor and the graphics adapter and then the hallo world will go and

print there and that part is basically a kernel mode.

So when a process executes some part of it will be executed in the user mode and whenever it

does a system call we go to a kernel mode and starts executing in the kernel mode. So to

distinguish between these two modes, let us look at supervisor slash kernel mode, where one

can execute all machine instructions, one can reference all memory locations and there is a

user mode where only a subset of the instructions can be executed and only a subset of

memory locations can be accessed.

So if we go back to the information security 2 course on architecture layer to information

security, there we have introduce four privilege levels or four modes, privilege 0, 1, 2, and 3

in the contest of the X axis (())(3:15) architecture and we have explained how this type of

intra-process protection can happen and how you switch from one mode to another modes.

There is a dedicated assignment on task switching which basically talks about how we can go

from 0 to 1 to 2 to 3 and back 3 to 1,0 and how one can be at a level three that is probably the

user mode and go and execute a program to that is level 1. How are interrupts handled? So

are the interrupts are in user mode or are they in kernel mode? Can I execute an interrupt

service routine in the user mode? Can I execute it at a kernel mode? All these answers are

available in our architectural layer to information security 2 course, I urge (())(3:59) the

readers to please look at the assignments specifically with respect to what we called as task

switching in that course.

(Refer Slide Time: 4:06)

So just to give glimpse of what we covered in that course, there is a notion of a kernel; there

is a notion of a memory. So what do you mean a notion of a memory for a kernel? So in the

memory essentially is basically split into two parts, one part is for the user space another is

part is for the supervisor space or so when the kernel is executing, can access the entire

memory namely a user space and the supervisor space, but when user process is executing, it

can handle only the user space and so the supervisor process will work in the supervisor

mode the user process will work in the user mode.

There are instructions for example, if we go back to the information security 2 course, there

instructions like int int etcetera, which are like LGDT, LLDT load global descriptor table,

load local descriptor table many many important instructions that are all what we call as

privilege instructions, those can be executed only in the supervisor mode, it cannot be

executed in the kernel mode and we could go and reserve memory every bite of the memory

can be given a privilege level. So if a memory location has been given a supervisor level

privilege then the user process cannot access it. So these are some of the very interesting

things that form the basis of protection and security in the operating system context.

(Refer Slide Time: 5:31)

And then there are lot of care that is taken while there is a switch from a user to kernel mode.

One important care is that I ask for certain kernel functionality and what happens I go it goes

in the kernel mode and never returns back there something that has happened there and the

system call does not happen.

So one of the things that many operating system specifically real time operating system does

(())(5:55), when we go from the user mode to the kernel mode, they go and setup what we

call as counter and view setup some time quantum in the counter and the when the counter

reaches zero, immediately it generates an interrupt. This can also happen from user process to

a kernel and also, it can happen from a kernel to user process. So as an operating system, I

start executing user process and then what happens is that I need to have a response from the

system and if the system goes on to an infinite loop and I want to pull it out after some time

then I actually set timer and based on the timer interrupt, I pull it out. This is the basis of

round robin scheduling.

The other part is that when I am looking at real time processing and there is a user process

which is requesting some service and it does not come within sometime, I can still have a

timer which looking (())(6:48) it back, it may not take it back to the user process but it can

take it back to the another OS routine, which can do some file save of activities. So there is a

notion of an hardware timer. It is very very important in the context of operating systems,

which can basically be programmed to get quick responses to ensure that responses are quick

and in cases the response is not quick then it can take some (())(7:13) actions to see that no

major damage is done, because of the lack of response.

(Refer Slide Time: 7:19)

So to look at in a nutshell, if you look at an operating system, it gives there is an underlying

hardware and that hardware has different things that it do. The hardware has the IO devices, it

has it stores files, it needs to be secure, it needs to be auditor, there are multiple resources that

needs to be manage, there are lot of error that need to be managed IO devices are there. So

what is the operating system do? It actually provides services to other part of software’s that

recites on the computer through what you call as system call.

So there is user program, the entire setup is to basically run that user program properly and

the operating system provides an user interface using, which the user program can call the

system calls and what does system call do? It actually provides an abstraction for of the

hardware resource available and what are all the abstractions that you see, I can look at

mechanism by which I could control the program, there are Io devices I see a file system,

there are communications that could be established, error management, resource

management, auditing, security everything are abstractions and the system calls can be used

to basically go and achieve these abstractions, namely I want to control a program, I use a

system call to go and control the program, for example in Unix fork is a very very interesting

program control mechanism, which is basically a system call.

(Refer Slide Time: 8:49)

So to sum up the operating system provides facility for program creation and execution. It

gives you access to IO and files. It provides system access. It also provides lot of resilience in

terms of error detection and response. It is responsible for allocating resources that a process

a program in execution wants. It is also very important for us to account in many of the

systems, which are paid systems, where you pay for the service, there is accountability and

then there are for legal reasons we need to know, who has access the system. So there is

logging that needs to be done, which is also a under the head of accounting.

(Refer Slide Time: 9:26)

Operating system is also responsible for program execution, for IO operations, for file system

manipulation and also, communication between the processes within the particular system or

across systems, in the case of a network distributed operating system and (())(9:40) these are

all some of the services, which the operating system provides for which we have understood

to some level so far (())(9:47).

(Refer Slide Time: 9:48)

In addition the operating system should have error detection, it should have additional

functions exist not for helping the user, but rather for ensuring efficient system operations, for

example, thermal management today, it is a very very interesting example of additional

functionality, when a chip heats up then automatically some of the CPU cores (())(10:08). So

if we have a multi cores system, some of the cores are put into sleep and then resource

allocation as we have seen accounting protection etcetera. So these are all some of the

services that the operating system provides.

(Refer Slide Time: 10:23)

Now how do we request for the services are two ways by which one can request for the

services. In many of the operating system today, this basically done through system calls.

What are system calls? It is basically a process when it is executing, it needs to get some

service from the operating system. It executes a trap and the moment I reviewed a trap we go

into an operating system interrupt handler as I told you every trap will have a number we go

to an interrupt table and that particular interrupt service routine starts executing and after that

interrupt service is over, we come back to the application. So this is a notion of a system call.

There is also something called message passing. What you mean by message passing? The

user actually constructs a message, which it wants to deliver to the operating system and it

invokes (())(11:13) to pass the massage to the OS and once it sends the message to the OS, it

gets blocked, it starts waiting. So some other process can start working and then the OS

actually from its end it receives the message from this block then it execute some functions

and after the function is completed, returns back massage. Now the process which is blocked

again gets unblocked and starts executing. So this is another way of getting a service done

from the operating system. So one is call the message passing another is called system calls.

(Refer Slide Time: 11:47)

So this basically graphically, it is teaches you what is the difference between a system calls.

Systems call nothing but a call of some nature, which creates a trap, which goes as an

interrupt and you return from that. In a messing passing interface, which we call as MPI we

send a data from the user process to a kernel process, the kernel process reads the data after

finishing some computing, it sends back an answer and which is received by the system call

and immediately, it is starts executing. So these are two ways by which one can get

operations done out of an operating system.

(Refer Slide Time: 12:23)

So what are system calls? System calls basically or as I told you like printf, scanf etcetera

malloc is an example of a system call, allocate memory and whatever you see on the libraries

of the stdlip or stdio. These are all basically system calls and when we do a system call

essentially we need to give some parameters, for example, if I want to do a scanf, please

understand, I have to give the address to which I need to scan the data scan in the data, when

I want to printf I need to give the value.

So there are some parameters that are passed between the user process and their

corresponding system call and that basically happens. There are many ways by which one

can pass the parameters, one can pass it through the stack, one can pass it through specific

memory locations, even pass it through registers. So depending upon the type of things that

we passed depending up on the mechanism that is decide at (()(13:14) user process can pass

parameters as a part of the system call. So it is like any other one subroutine passing

parameter to some other subroutine, the same process can be there, but with lot of security

here, right.

So in the information security 2 course, please understand that we had covered in depth about

how data is passed between privilege level 1 code and a privilege level 0 code. There are

different stacks that are involved and why do we need multiple stacks? All these things have

been explained very in detail, in the information security 2 course, which would be of very

high importance when you want to appreciate how parameters are passed between an user

process and the corresponding supervisor process.

(Refer Slide Time: 14:04)

Now if we take some of the old operating systems like MSDOS, so all the levels namely the

application programing and the resident system programing, MSDOS drivers everybody

directly talks to the hardware device driver. They actually talk directly every layer can touch

the hardware bypassing the intermediate layers as you see in this particular thing on your left

hand side. So but on a hieratical structure like Unix, where you have a layered operating

system.

 So there are different layers as you see here, there is the undermost layer is a terminal

controllers and terminals device controller, device memory controller, these are all the

hardware on just top of that hardware as you see, there are kernel interface to the hardware

and then then there this is the operating system there, where you have signals and terminals

handling character IO stream and IO system and terminal drivers, file system and then CPU

scheduling, page replacement etcetera. So that is the operating system. Then there is a system

call interface on top of it and then you see, there are shells and commands and compilers and

then of course the last one is the users. So you see at least there are four layers that we are

looking for, perhaps there is the reason why may be there is reason why a the X axis (())

(15:22) architecture are four privilege levels.

(Refer Slide Time: 15:26)

So all the any OS like Linux, windows vista will follow this hierarchical structures has and it

has two important separable parts, the system, which is the space slash program, the kernel

space which is again the space program. So the kernel as you see in the slide, is comprises the

system call, interface and the kernel interface and then we have all the files system, CPU

scheduling, memory management all these modules. They form the kernel there.

(Refer Slide Time: 16:00)

So this leads us to what we call as a layered operating system, which I have been talking off.

So we have layer zero, which is the highest privilege and which is very close to the hardware

then top of it layer one with laser privilege and go on, I can go up to layer n so, but the bigger

difficulty here is, how do we define which part of the operating system goes to which layer

and what sort (())(16:21) out of capabilities and user will have on each of these layers and so

sometimes, this definition of generation of this layered operating system tend to be less

sufficient, because if a layer n code wants to execute on the hardware, it may have to through

layer n minus 1 to layer 1. So there could be lot of system calls and stuff like that and lot

more of before a program can touch the hardware, there could be several other programs

which execute on the same hardware to enable this to go and access that hardware and that

causes this efficiency loss.

(Refer Slide Time: 16:59)

One of the interesting thing that has come up in the recent time is this microkernel based OS

structure. So I have a kernel, I take that kernel and lot of things that are very close to the user

space we push it into the user space and essentially then what remains is a very part of this

kernel which we called as a microkernel. Now the microkernel, so since all the other parts

have been pushed, the microkernel actually becomes much smaller and it becomes easy for us

to port it across multiple architectures and it is also very much possible that I can go and do

certain formal verification of these microkernels, because it is all very small in size and I can

ensure that decide (())(17:40) function not only that the decide functionalities executed by the

microkernel, but functionality that we do not decide that will not be executed. This answering

to this second question is to very difficult.

Will the software execute what it is supposed to do? The answer could be easily done we can

give an answer for that easily. will the software can you ensure that the software will not do

what it is not supposed to do that is a very difficult question to answer, because we do not

know what it is not supposed to do, I know what it is supposed to do, but I do not know what

it is not supposed to do and so for answering that type of question a more formal approach is

necessary and if I have a huge kernel, I cannot do any formal approach or formal verification

on it. If I have a microkernel then one can do a formal verification on that and that makes the

notion of a microkernel very very important in the context of building secure operating

system.

(Refer Slide Time: 18:32)

So today if you look at now operating system, there are multiple modules, as you see on the

slide you have at least seven modules, 1 for scheduling, 1 for file system, another for system

calls, which you can load some we can say, I could have executable formats, I could have

streams, I could have other miscellaneous modules. So what is the interesting thing about this

modular operating system? I can go and load some module as I need, suppose I do not want

some devices are (())(19:03), I will not go and load the drivers at all (())(19:05), right.

If I do not want to support certain system calls, I need not load those systems calls. So I can

built up a new core of say, for example, it is quite true solar is (())(19:17) the operating

system in the past, which basically give the notion of a modular voice structure in a very big

way. So the thing is that I need not load certain one (())(19:27), for example, (I am) I want to

disable USB , we can go and say do not even load the system driver or anything related to

USB just do not compile your kernel by it removing all those things that make your kernel

extremely secure that can give you much much more guaranty that somebody cannot break

(())(19:46) open by you know the traditional means to get information out of your system. So

a modular OS structure is extremely important towards building up a secure OS.

(Refer Slide Time: 19:59)

The last thing that we will cover today is about in this module is about virtual machine. What

is a virtual machine? Virtual machine is nothing but a software box and many such box could

exists on a single hardware what you see in. So what normally we see is that in a normal

machine, there is an hardware, which you see on your extreme left in your screen, there is a

hardware then there is a kernel and that kernel is executing on the hardware and there be

processes that are executing on that kernel and which will be placing (())(20:31) the hardware

through the kernel interface. So this is so there is only one operating system and this

hardware is dedicated to this operating system.

Now you see what is there on figure B that is on a middle of the slide. Now you see, there is

single hardware then there is a virtual machine implementation like, there are multiple virtual

machine, KVM is an freely available virtual machine today, you implement a virtual machine

layer and what will that virtual machine layer dive you? It will give you what you call as

boxes virtual boxes, which we call as VM1, VM2, VM3 I can create n such boxes and on

each one of this box I can run different operating system. So the kernel on VM1 can be

windows, kernel on VM2 can be you know Linux etcetera.

So I can run multiple operating systems on this and in each of these operating systems, I can

run processes. So now the processes corresponding to VM1 thinks that the entire hardware is

dedicated to it, processes corresponding to VM2 thinks that the entire hardware is dedicated

to it, but (())(21:33) it will not even know that VM1 exist. Similarly, VM3 thinks all the

processes there we will use we will think that the hardware is dedicated to it; it may not know

that VM2 exist or it may not know that VM1 exist. All the processes in VM1 will execute in

isolation isolated from the processes of VM2 and VM3. Similarly, VM2 processes will be

isolated from VM1 VM3 and VM3 processes will be isolated from VM1 and VM2. This is

the notion of a virtualization and this is suppose to in practice also improves the hardware

utilization.

Now one of the important thing that comes out of this is, now again I am shearing resources.

So there should not be the isolation that I have talked should be perfect isolation should be

provable isolation such that a process in VM2 should not be in a position to go and leak

information about generated or used by process in VM1. So there should be an complete

proved isolation between these VMs, which are executing on the same hardware. The real

challenge here is that all the hardware resources are sheared between VM1, VM2 and VM3,

right and with that shearing we need to ensure that there is no information leakage, which

makes the whole thing a very complex (())(22:54).

(Refer Slide Time: 22:55)

So that is what we have mentioned here. So today virtual machines are very very important

today what they form almost every data center in the world would have at least one insulation

of a virtual machine. Virtual machines not only gives notion of more efficient hardware

utilization, it also helps in what we call as consolidation of applications or consolidation of

your server and that way virtual machines are going to be extremely crucial in days to came

(())(23:25) with this, we complete this module 4, we will talk more about operating system

from the process and file management in great detail in the module. Thank you.

