
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems Introduction

Mod01 Lecture 05
Module 5: Process and Threads

So welcome to module 5 and in this module we will be talking about process and threads.

These are the next most visible part of the operating system that when you start executing a

program you create a process just to give you a background of what we have covered in the

previous modules. I have a program say hallo world dot c, I compile it, it gives you an A dot

out. So hallo world dot c is a program, A dot out is an executable program. So we may call

hallo world dot c as a source program or a source code and A dot out as an executable code.

The moment you say dot slash A dot out and press enter then a process is created. So a

process is nothing but a program in execution. Now there is a settle certain (())(0:55)

distinction between process and the another unit of execution what we call as thread.

Now a process can be multi-threaded, in the sense that a process can have many units of

execution. So what do we mean by units of execution? I will give you an example and one of

the best example is that I could think of is the Microsoft word. The Microsoft word in its

entirety (())(1:19) can be treated as process can be looked at as a process and when we look at

the different functionalities that is done by Microsoft word, there is a functionality that

accepts the input text. There is another functionality which formats it; there is another

functionality which basically draws red line for your spelling mistakes. There is functionality

which draws green line for your semantic or grammatical errors and then there is another

functionality which basically stores your program.

So so at least we could think a five different functionalities or five different functional that

are part of this process and is not necessary that all these five functions are done by one

single sequential code and that gives us a notion of what we call as a multi-threaded program,

where each one thread will be doing one of these functionalities. So when you invoke

Microsoft word then there are five different execution units that are in action. One unit will

be accepting the test, one will be formatting the test, one unit will be drawing the read lines,

one will be drawing the green lines and another will be automatically saving it at regular

intervals, each one of this can be called as a thread.

Now so in essence a thread is also a code in execution, right. A process is also a program in

execution; thread is also a program in execution. So what is the difference between process

and thread and this is extremely important for us to understand even from an information

security point of view, because many times the hacks or the leakage of information can

happen, because of improper shearing or not a very (())(3:01) rigger rule base sharing of data

between these different units of execution namely threads and processes. So before going to

into the explanation of what is a difference between a process and thread. Let me also give

you a background of what we have covered in this information security series so far.

So in the information security 2 course we have talked lot about computer organization. So

many of you would have read two subjects in your curriculum, one is called computer

architecture another is called computer organization, some university curriculums have this

has computer architecture and the organization. We need to make a distinction what is

computer architecture as a subject and what is computer organization as another subject.

Now the computer architecture basically it tells you how hardware is design, but computer

organization basically tell you; how the compiler and the operating system can actually use

hardware that is design. So the computer organization basically talks about the interface

between your operating system compiler and the hardware, while the computer architecture

basically talks about how you build that hardware to meet those functionalities.

So in the second course we have talk lot about computer organization, we have talked about

memory management, we have talked about process management, we have also talked about

interrupt management. So in the memory management, we have talked about segmentation,

we have also talked about virtual memory or paging and we have also taught you how to

write interrupt service routine for one of the most common architecture that is in practice the

(())(4:32) architecture, I strongly suggest that go back to the videos of the information

security 2 course, which is available for free and look at those modules and if possible do

those exercises if you do those then appreciation of what we have going to talk in this course

will make lot more sense. These are available free in you tube, thanks to IIT Madras and the

mooc platform and if you have problems in accessing that please put a note in the discussion

forum and we will be too glad to send you the link, right.

So with this there is a background and with an assumption that you will make and earnest (())

(5:11) attempt to go back and look at those videos, I am now going to the next part of this

course namely process and threads, right. Now what is a process? A process is a program in

execution. A thread this also a program in execution.

(Refer Slide Time: 5:27)

 Now what is the like a process, which is actually a program which executes one instruction

after another, the thread also will execute one instruction after another. A process can create

children, right. So when you boot a Unix system then there is a what you call as the first

process that comes up and that process actually creates many more child processes. So, the

process is like a tree. There is one process that comes into execution when the system is

booted up and there are many processes that are spawned. The spawned means created or

fobbed. So different names are used in the operating system (())(6:07) parlance and these are

the process that are the children child processes like, a process they thread can also create

children and an like process if one thread is blocked another can also run, but in some seen

arrows.

So a process is a program in execution, a thread is also a program in execution. So that is so

whatever a process does during execution the thread can also do and that forms those four

similarities that see in the slide, but what is the difference. So process is so, let me give the

difference by an example, right you takes Microsoft power point and Microsoft word. They

shear very less information or many times they do not shear any information. So these two

can be treated as two different processes. They are two different executable programs and

they execute and many times they execute in isolation, but when you take the other example

of a Microsoft word in which, there are five different execution units running then they shear

lot of information, for example, the thread that accepts input, the thread that formats the

input, the thread that drawn green lines for that input, the thread that draws red lines for the

input and the thread that actually saves that input, note that in all these five sentences I have

use that word input that essentially mean that this input is being sheared.

So a thread shears lot of information among itself and they collectively try and do a single

job, while the processes can be two different entities doing two different totally different

functionalities and may not and need not shear any information. This is at a functional level,

but when you even when you look at an architectural level, threads can shear many resource,

for example, the micro the five threads that we have talked about inside Microsoft word as an

example, they can shear the memory, they can shear part of the stack, they can shear the code

segment, they can shear the data segment some part of the segment data segment etcetera, but

then they will have there some part which will be executing their own code and then they will

have their own stack and each one can may not shear the general purpose registers, because

when they execute, but there is a lot amount of data that five threads actually shear while, this

is not the case when we look at two individual processes.

So the main difference between the process and thread from the architecture perspective and

also from the functional perspective is they shear more threads shear more information while

processes do not shear among themself and the second most important thing that you should

look at is that these processes is two different functionalities, two different processes to, two

different functionalities, while threads actually work together to achieve one functionality. So

this is something that we need to keep in mind. Since, the thread is a part of the process and it

need not carry that much resources specifically allotted to it. A thread is called a light wait

process.

(Refer Slide Time: 9:19)

Now why do we need threads? So threes are many many interesting things that we need to

talk of here. The some of the things that I have already explained and some of the things that

we will see here. Now a process can have multiple threads and these threads shear common

data, but then they can work in isolation one after another. The threading can happen at two

levels, one is at the user level another is at a kernel level. Now let us this particular slide

though, I am talking about many things that we have covered previous slide to my lecture, I

will now make distinction between kernel level threading and user level threading and that

will explain you why we need threads and what are the advantages and disadvantages of a

having threads.

Now the operating system actually works in two modes, one is the kernel or supervisor mode

another is the user mode. In the user mode, the operating system runs certain programs and if

a process is executing in the user mode, it has very less privileges then when the process that

is working in the kernel or the supervisor mode. So now when we want to move from the user

space to the kernel space then what we do is a context switch in which, a user level program

is basically removed and a kernel level program is basically scheduled.

Now the switch from user mode to a kernel mode or a user mode to a supervisor mode will

takes lot more time. In the information security 2 curse we have basically given lot of real

examples and also, there are exercises which you can encode which basically teaches you

how we can do a context switch from a user mode to a kernel mode. There we were talking

about privilege levels an Intel or an AMD (())(11:21) its processor works in four privilege

levels privilege 0, 1, 2, and 3 while the privilege level 0 or 0, 1 and 2 can be supervisor mode

while the 3 can be user mode. Now what it means to move from privilege level 3 to privilege

level 0, 1, 2 we have covered that in great detail in the information security 2 course, I

suggest that you go and look into it.

Now why are we talking about a kernel and you know user mode at this juncture (())(11:49),

the point is when I want to implement threads, three is two ways by which I could implement

threads. One is call user level threading, another is call kernel level threading. What is user

level threading? The threads are created by a user program. So we have Pthreads etcetera and

the way we can implement Pthreads is that we could create it at a user level we can also

create threads at kernel level.

Now when I do it at a user level then when I want to context switch from one thread to

another, so the threads do some multiple functionalities, when I want to do a context switch

between the threads, I need not go to the kernel level, I can context switch at the user level

itself. So the context switching actually becomes fast when working with threads at the user

level. Why it is fast because when I do a context switch at a user level I do not I since I shear

lot of memory, lot of information that are required in with respect to memory need not be

saved you may have to and save your program counter, your stack pointer and some general

purpose registers, but you need not save lot of things about the address space.

So for me to move from one thread to another is going to be much simpler for me and much

faster for me when I use thread at the user level threading, but when I am doing at that user

level, one of the major disadvantage that you should keep in mind is that the kernel actually

sees only one process, but the process could have multiple threads since, these threads are

created at the user the kernel will not know that I have five threads, the kernel will only see

one process.

So even if one of my threads wants to execute a system call then basically it calls the kernel,

the kernel will see that, that request is coming from the process, not from an end user side. So

it will go and install or suspend the process for executing the system call. So what happens is

if I have a user level threading and if one of my system one of my thread wants to execute a

system call namely, it want to execute a system call, namely it want to write a disc or read

from disc then all the other threads will be suspended by the kernel.

So the advantage of user level threading is context switching will be fast, but the

disadvantage is if one of these threads has to do a system call then every other thread will be

installed by the operating system. The other part is the kernel level threading where the

threads are created at the kernel level, when that is happening then if one of the threads wants

to do a system call their kernel will know that this is the thread which needs the system call

and it will suspend only that thread, the remaining threads can still execute, but when I want

to do switch from one thread to another thread, so I have to basically go to the kernel level

and then do the context switching.

So the context switching becomes slower when I do kernel level threading. So the slide why

threads, this slides basically assumes that we trying to do user level threading but and many

of these point become an advantage, when you are doing a user level threading especially the

seventh point here, it says that context switching are fast when working threads. This is true

when we do a user level threading, but this is not so true when we do a kernel level threading.

Nevertheless, switching from one thread to another whether it is user level threading or

kernel level threading each faster than switching from one process to another process.(15:30)

(Refer Slide Time: 15:33)

So let me just sum up what I have talked so far yes, threads, the biggest advantage of having

threads over multiple processes, we can say that I have five different functionalities. Why do

not I create five different processes? Why should I create five different threads? The first

thing is the context switching is very very inexpensive , I have explained that in great detail

and I also suggest again I repeat that go back to information security 2 course and see how

really a context switching can happen in the context of a process, you will understand how

difficult and expensive it is. Then the next thing is that shearing is also very very important,

threads can shear lot of resources and there is need to shear this resources as I had given an

example of the Microsoft windows platform.

(Refer Slide Time: 16:16)

The disadvantage as I have told you, blocking is a disadvantage. If I am doing kernel level

threading blocking is not going to be there. What we mean by blocking if one of the thread

wants to execute a system call, other threads are also blocked and this will happen at the user

level threading, but if I do a kernel level threading then this blocking will not be a issue, but

again whatever advantage that we talked off in the previous slide, in terms of faster context

switching we will get a little, but degraded (())(16:42) when we go to the kernel level

threading, but why are we talking about threads and processes here?

There is a big implication of security, because now I have different entities trying to shear a

resource when an entity is sheared there is an extensive shearing actually not a simple

shearing then there is a potential problem of security we will address this as we go through

not just information security 3, but 4 and 5 and then 5 courses that we have planned in the

series, lot of points will come out where the security is basically compromise, because two

processes or two units of execution namely threads are trying to shear some information in

which, one of the thread can be a malicious one or can be a weak one, which can leak

information. So this is where security gets compromise.

So if you want to actually become a good security engineer, you have to be very thoro with

this fundamental things like, what is thread? What is process? What is this involving you

need to have thoro knowledge of that and that is what this course is aiming at and so please

have undivided attention in the rest of this module and understand this and again I repeat, I

will be repeating it many times, please go through information security 2 course at the least if

you do information security 1 and 2, the videos if you look and come to this course is be

extremely proof full but at least to you need to look at so that you get the full effective

delivery of this course from a understanding perspective, thank you.

(Refer Slide Time: 18:25)

Next we will go on to what kind of benefit and application get about threading. So we will

just see some examples of this. There is a proxy server is a very very interesting example of a

multi-threaded process. So in general if there are programs that I has to do more than one task

at a time that will certainly benefit from multi-tasking and so, the example again I have

coated here is the Microsoft word type of program, but if there are sequential processes that

cannot be divided into parallel task, right then these are the things that will not benefit out of

threading, right.

So one of the interesting thing is that as an when the processor, the architecture, the hardware

started supporting multi-threading. Now there is owners or responsibility of everyone starting

from a teacher, who teaches a B. Tech course, a student who learns under graduate follow,

post graduate follow then he becomes he or she becomes a teacher. So there is a generation

responsibility that we have to guide the next generation in looking at concurrency looking at

parallelism how to see, if there are components of your problem that could be solved

concurrently and that is very very important.

Unfortunately, today many curriculums do not address this issue, hopefully over a period of

time curriculums do improve and start looking at concurrent programing as a paradigm even

at an introductory stage, even at your first year of your under graduate program or your post

graduate program, concurrency should be taught how to look at things as you know different

units of execution that could execute in parallel and if unless you do that you will not use the

full potential of modern machines, today you cannot get a single core say, (())(20:07) its

machine you cannot get the single core machine on your dextop, even your mobile phone we

will go up to 8th processors. So what will you do with these things, right? We just having

processors cannot be you know a doll, right. We cannot just keep playing you have to use it;

it cannot be just a showcase doll.

So it is very very important that all of us learn concurrent programing, if they are teachers

who are listening to me now, if there are decision makers university, board of academic

courses people, who are looking at it, please please please go and start looking at introducing

concurrent programing in your curriculum and that is very very very important and if there

are people who are not looking from this and you people who can make decisions please,

pass this video to them.

(Refer Slide Time: 20:59)

Now I will summarize what do you mean by a context switch again, we have covered this in

information security 2 course. So there something call a process control block a PCB. Now it

basically saves information about a process and what is that information that you need to

save? We need to save that information so that at any point of time, I can restart that process

exactly at the point where it left and when I am restarting, the entire state of the system what

you mean by a state the program counter, the general purpose registers, the memory, the stack

pointer etcetera should be restored at exactly the point I left.

In addition, so we have to store the process state. What we mean by process state the program

counter, the PC and the process state is also whether when at the time of context switch what

sort of why did I context switch we will see as we go into the scheduling in the next couple of

modules, I context switch just, because I made a mistake as a process, right. So that means

there is I landed a pin trap (())(22:01) I say I had executed divide by zero or I did a segment

overflow or I wanted to actually take some help from the operating system, I want to print on

the screen printf or scanf, I want to read from the keyboard, I want to write or read from a

file. So I did a system call.

So in these type of things, I go into a suspended state and the operating system will finish the

interrupt service or the system call and then get back. So my state would be a suspended state

or a waiting state after which, I will go to ready state and I will come back. So a process can

be in different state we will talk about those states very shortly. So we have to store the

process state then we have to store the program counter, I hope all of you know what program

counters mean then the values of the different registers, then the CPU scheduling

information, then the memory management information like the page table etcetera and the

possible accounting information for this process. How much CPU time I have took use at

etcetera and then IO status information.

So all these things constitute what we mean comprise what you mean as a process control

block and this needs to be saved so that the process can be restarted at any point from exactly

the point where they left. So when we have multiple processes that are running then each

process will have a process control block and these process control blocks will be maintain

by the operating system and as an when a process one process one switches to process two,

the context of process one is saved in its process control block and the context of process two

is loaded from its process control block and process two executes.

Now process two finishes and again or process two is pulled out and process one as to now

execute then again process 2s context is stored in process its process control block. Process 1s

context is loaded back from its process control block into the system and it is starts executing.

So the process control blocks basically maintain the context of all the processes that are

currently executing if you are having in understanding what I have told in this slide, please

again go back to information security 2 course and there are we have explain everything in

great detail.

(Refer Slide Time: 24:21)

Now like processes we could have thread libraries and I later let us now talk about there are

two primary ways as you see, a library entirely in the user space and library at the kernel

level which is supported by user. Now what is a thread library like math library, where you

have lot of math functions already implemented like cos, hyperbolic I can do in C right. So

similarly a threaded library, also we will have several things which can basically talk invoke

lot of thread related functionalities, we will see a very simple program down the line, which

will talk about different functions in this thread library.

Nevertheless when I want to use a math function, I say hash include math dot h and then I can

use all the math function. Similarly, I can use hash include thread dot h and I can use several

functions, which are related to creation, termination and spawning of threads, okay.

(Refer Slide Time: 25:12)

So this is the one of the very very important thread libraries the P threads , this can be

supported at the user level or kernel level and it there is standard call the POSIX standard

from IEEE, which basically gives you the application programmer interface for threading that

creation and synchronization. So the what is application program interface, which actually

specifies the behavior of the thread library and this is common in Unix operating system

Solaris, Linux Mac OS X, you can basically use Pthreads there like how I could create a

process and I could kill a process or I can terminate a process, I can also do a thread

cancellation, I can terminate a thread and the thread can normally it can finish by itself, but it

can also be killed we could have asynchronous cancellation, which means it will terminate

the target thread immediately you could have a differed cancellation allows the target thread

to periodically check if it should be cancelled, right. The thread can itself go and check for

itself.

So what is the main thing here? What is a role of operating system when a thread is cancelled

then it should immediately, the resources that are allocate at the thread should be brought

back, but then there are multiple threads that are shearing that information, see if a process is

terminated then all the information related to the process can be released, but in the case of

thread it cannot be if I am having a user level threading and one thread terminase then there

are or even if I have a kernel level threading, one thread terminate. What is it (())(26:42) that

I could get out of the threads that is very very important. What is it that an (I should) I need to

release and if I fail to release then it becomes a leak, right because then it becomes nobody is

resource.

So when a thread is saying, it is completed or it is canceled for then we need to retrieve the

resources release the resources exactly (())(27:03) into it and that is going to be a problem,

because I really do not know, which are information that is used exclusively by the thread and

which are the information that are sheared. So that is also one very important implementation

within the operating system, because if I am not go into release it properly then potentially I

could have a leak of the resource and I could also have certain security vulnerabilities there.

So thread cancellation is very very very important, right. So to create a thread is like making

friendship, but to cancel a thread is something like to maintain it. So it is very difficult to

maintain friendship and similarly, a thread cancellation also is very difficult much much

difficult than creating the thread.

(Refer Slide Time: 27:52)

One of the very interesting things that I have come up is thread pools where these are lot of

threads are already created and they are all awaiting work, for example a printers pool

etcetera, right. So since I created the work already. So there are some examples that have

been given at the end win32 API and java 1.5, where you can basically use these thread pools.

So since these threads are created already the creation is faster. So if we want to have a

request, for example I have a pool of threads which will do certain functionality and I want to

do that functionality, it is very quickly achieved by using one of the thread that is already

created, just I have to give some inputs or a signal and it will work and it will basically give

back the result.

So thread pools become extremely important in the context of the real time operating systems

where you know we have looking at very quick response time, we have talked about what are

real time operating systems and their distinction in the previous modules and one of the

things that we said that we are looking at response time, we need very quick response time

and these thread pools can be used for getting very good response time.

(Refer Slide Time: 28:57)

And we could have thread specific data and for every thread each thread can have its own

copy of data and this is done, because then this useful when you do not have control over the

thread creation process. So when I have a thread pool (()(29:10) so, somebody request for the

thread, they take the thread they execute it and get back. So I do not control that as an

operating system we have less control over that. Now the moment I have thread specific data,

now it is very very important that when the thread completes, the entire data needs to get

erased, entire threads may have to go off otherwise, there could be security vulnerability. So

though threads are very interesting for us, threads need to be handled very very carefully in

the context of information security.

(Refer Slide Time: 29:40)

Now this is the simple example of a P thread and what we see there is that. So 2 things are

very very important, first thing is there is a P thread dot h as I told you math dot h we also

have P thread dot h then we can create thread by using P thread t you can get a task id for this.

Now the two functions, we will not go into the entire Pthread creation (())(30:03). Let us see

look at two functions there, Pthread create and Pthread join. So basically the create will

create task id and there you also have, so when I create a thread that means I say, this is say

thread. In this thread executes this program.

Now what is a program that I am going to execute there? The program is call runner. So I am

just looking at the 4th thing Pthread Crete tid and you please, note that there is a runner there.

That runner essentially means another program you see some program there down for runner.

So I can create a thread and say in that thread this particular code will be executed that is

possible and then I can go and exit from a thread, you see Pthread exit inside runner

essentially it will exit. So this is very simple example, I am not going into full details of what

Pthreads actually do, but this is an example where we say that threads could be created and

the threads could be completed.

(Refer Slide Time: 31:07)

We have talked about process state in some of the previous slide. So whatever process or

thread they have state (())(31:12). So a thread can be running as currently execute in or thread

can be waiting to getting executed it. So that is called a ready a state and the thread could be

in a blocked state, where it is asking for some system service or it is asking which is doing an

IO. So it will be waiting, it will be blocked till that IO is completed, it will be blocked after

the IO finishes, it will brought to the ready state and then it will be scheduled for running.

So running, ready and blocked are three states of a thread we will cover that in using a state

state diagram in the next slide. Now so what happens is first a thread when you create you

call spawn. Spawn means you create a thread. Now immediately when you spawn then it will

go into a queue call ready queue. The queue will basically have all the fellows who can

execute.

Now a scheduler if you are it is a user level threading then the user level scheduler will run. If

is a kernel level threading and the kernel level scheduler will run and the scheduler will now

of all the threads that are waiting, it will find out whoms would I execute, it will take it and

put it into the CPU then it will start executing that time the thread is in the running state.

Currently it was in the ready state then it becomes the a running state. When it is running, it

say is it wants to do a printf. So immediately it calls operating system.

So now the operating system starts executing at this point it will take that state that thread and

put it into a blocked state and it will do that scanf for that true thing and it will give the input

of got out of scanf to that thread till know the thread is in block state, once that system call

corresponding to the thread is completed then it is now again moved back to the ready state,

again it goes to the running state. So this goes on this merigo round goes one after another till

the thread is completed and then block and unlock or basically things blocks is to actually

block that thread from running so that, because it needs some service.

So what is block do? It actually does a context switch from the thread to a kernel level

routine. So in the case of a block then you actually save all the user registers, program

counter and stack pointer, you save the context of the thread and move to the context of the

service routine and once the service routine work finishes, you unblock that process and

throw it back to the running ready state and when all your things are finished then you can

come out all this.

(Refer Slide Time: 33:46)

So this is a thread state diagram when I spawned, I go to the ready state and when I am

scheduled I go to the running state and for some reason due to an interrupt if I am preempted

that is stopped, I do not do any mistake, I do not want any service, but then external interrupt

has come and it say stop that is called preempt then again I go back to the ready queue and

again the scheduler actually schedules me back, I come back to running again I go back if

there is a preempt back to the ready queue.

So that are the two edges between ready and running state but when I am in a running state

and I ask for some service system called I essentially get suspended I go into the suspended

state or what you call as waiting state and when the call is serviced by the operating system

and it is slower than I can go back to the resume state, even when I am in a ready state I told

about user level threading all my threads can be suspended if one of my threads want so one

of my thread is running the remaining 4 threads.

So let us say 5 threads are a part of a process. So 4 threads are waiting, they are in the ready

queue one thread is running and this is thread now says, I want to have a system call then the

remaining 4 threads also should be suspended, because the operating system only knows one

(())(35:03). So this basically goes back and then we go to the suspended state and again when

that system call is over I is resume and that any state I terminate if I if there is a need for

termination it is user terminates or for some other reason gets terminate the thread is actually

deleted.

So this is the thread state diagram. This is also be the process state diagram in some sense (())

(35:29) we will look at process state diagrams, when we look at the scheduling in the next

day. So with we end this module, I hope you all understood more about threads and processes

and their differences between them, the intention of this course is not to teach what processes

are that is done in the information security 2 course. Now we just give you a different

between processes and threads, right. So we will move on to the next module. Thank you.

