
Information Security-3
Prof. V Kamakoti

Department of Computer science and Engineering
Indian Institute of Technology Madras

Basics of Unix and Network Administration
Operating Systems Introduction

Mod01 Lecture 06
Module 6: PROCESS Scheduling

So welcome to module 6 and we are looking at process scheduling. Now what do you mean

by scheduling? So I am scheduling my classes tomorrow, I am scheduling a meeting

tomorrow that means what we say that is you assign somebody wants a resource and you

assign (())(0:32) timing at which you assign that particular element to that resource, right. I

schedule a class means students want to learn hopefully. Now so I say at 9 a clock there is a

class. So I schedule that class means that students need to come at a 9 a clock to attempt to

that class. So I am assigning the student at to a classroom, which is a resource at a particular

time, right. So this is what we mean by scheduling, right. This (()))(1:01) is a the very simple

example of scheduling.

(Refer Slide Time: 1:36)

Now let us look at what do you mean by process scheduling? process scheduling here is that I

want to assign a process to the CPU at some time that is why we call it as process scheduling,

scheduling what scheduling process to whom to the CPU, right. So I want to schedule a

process to a CPU at a given time. So this is why we call it as process scheduling, okay. Now

we can also call it as CPU scheduling. Now what is the challenge here? Now, so already I

told that the there are several fellows waiting several processes waiting. This can be

applicable to threads also, there are several process we will say, this now processes, which

covers also threads. There are lot of processes waiting in a ready queue. There is only one

CPU.

Now the operating system should go and pick one process from these people waiting there.

These processes waiting there and assign it to the CPU get it executed then it has to get

another, right and this is the challenge. Now what is the challenge here, I want to see that all

the processes get executed nobody should feel that they are waiting, right. You are going to a

server; let us say you are going to a mail server. The scheduler in the mail server should see if

the moment you click (())(2:34) or mail should come if you will take half an hour for that

mail to come you get really frustrated, right these user level experience. So it is better to

understand the role of a scheduler. The scheduler, there are millions of users trying to access

to save their own mails.

Let us about let us talk take the example of a mail server. The millions of users who want to

actually go and read their mails, everybody wants to look at it faster. Now there are that

means every time somebody logs in a process is created. So there are millions of processes

waiting on the scheduler queue and I do not have millions of CPUs, I have limited number of

CPUs. Now there is algorithm, which will take one fellow, each process assign it to a CPU

and then remove it back etcetera and it should be done in such a way that the user never feels

that there is a delay and that is the challenge, right. So that is the entire aspect of scheduling.

Now the scheduling part of the operating system has two components, one is call the

scheduler another is call the dispatcher. The scheduler looks at the queue and finds out which

process I need to schedule. Once it identifies that process, the dispatcher will take that

process and put it into the CPU, right. So these two are two important components of a

scheduler.

(Refer Slide Time: 3:58)

 Now why does scheduling work? Now when we execute a program, a program is a

collection of CPU and IO, you even take the simple hallo world right. There is a printf hallo

world. So you assign something to a string say, hallo world to a string and print that string. So

there is a some computation involved where you actually assign that hallo world to a string

and then immediately, there is an IO where it is going to write on your console the hallo

world. So (())(4:27) even the simplest of the simplest program that you have written has a

small bit of computation and the small bit of IO.

So if you look at programs in general, this is an empirical study I can write a program, which

does not do any IO at all mainly, it may not make any sense, but the majority or 99.999

percent of the programs do have lot of CPU activities and lot of IO activities. Now IO you

know is a real IO in the sense that it takes lot more time than the CPU, right. It is much

slower than the CPU. So if I do say, 10 IO operations at that time I could do 1000s of CPU

operations that is the difference. So the IO is much slower than the CPU.

 So now let us talk about the mail server again I have 100s of processes. Now each process

will have its CPU activity followed by an IO activity again a CPU activity followed by an IO

activity etcetera. So this alternating sequence of CPU activity IO activity CPU activity IO

activity, this call this is how a program executes and each CPU activity is called a CPU burst

and then IO burst then CPU burst then IO burst. The CPU burst the IO burst need not be

essentially equal the IO bus will take much more time than the CPU burst for reasons that I

have basically talked.

Now when an IO is happening, the CPU will not do anything, because the IO is happening

between the IO device and the memory. Mostly the notion of a direct memory access or DMA

will be used and so the IO will never involve the CPU. So let us take the top diagram on your

right hand side. Now what happens is we have only one process that process does some CPU

activity then it does the first IO operation. When the first IO operation is happening on the

disc, the CPU remains idle and then while the first CPU operation was happening on the CPU

the disc was idle.

So the CPU is doing something disc is idle then the CPU becomes idle then the disc starts

working for the first IO operation, when the first IO ends again CPU starts working till the

second IO operation and in that period between the IO ends and the second IO operation your

disc is idle and again now, again disc start a second IO operation and till it ends the CPU is

idle and now again CPU starts operation and till the third IO operation, your disc is idle and

when the third IO operation starts your again your CPU is idle till it ends and so on so for.

So the disc and the CPU are not, so the question is when the CPU is idle why cannot it do the

with the CPU activity of a second process and that is what you see in the this next diagram

that is below on your right hand side. So when the CPU does the first job of course disc is

idle, the first job ask for an IO operation disc starts doing the IO operation of job one at that

time the CPU can do the job 2, the CPU burst of job two and then in this context I just put the

IO is much slower than the CPU or IO is faster than the CPU.

Now when the CPU uh when this job 2 wants to do an IO operation, it goes to the disc at that

time the job 1 can be rescheduled on to the CPU, again when job 2 finishes job 2s IO

finishes, job 2 can be rescheduled on to the CPU while job 1s IO can be done, right. So now

you note that there is a overlap of the IO and the computation here. So almost at the same

time 2 jobs can be executed almost concurrently and every job feels that they are given

sometime, right and there IO is also happening here, right. So this particular property that any

program that is executing is an alternating sequence of CPU burst and IO burst and that when

an IO burst is happening, the CPU is idle with respect to that program and when the CPU

burst is happening the IO is the disc is idle or IO peripherals are idle and this property and

this feature is basically exploited to start executing multiple programs at the same time.

Number of processes that are executed at a single point of time the maximum number of

processes that could be executed that is actually called the degree of multi programming. The

degree of multi-programing is means is equal to the maximum number of processes that are

simultaneously being executed being admitted into the system, they can be in of these state

running state or suspended state or waiting state. Running if I have say 4 CPUs, I could have

at most four processes that are running lot of things can be in waiting state, lot of them can be

in ready state put sigma of all this numbers and that is what we call as degree of multi-

programing, okay.

Now there are two types of jobs that we see, one is as CPU bound jobs, for example matrix

multiplication is a CPU bound job why because I have n cube multiplication, while only end

squared order n cube multiplications, right. If I want to multiply 2n by n matrix, but I have

only n squared IO, I have to read you know two matrixes and size of each matrix is n square,

right while matrix addition is an IO bound program, because I have only n square decision

and I have n square IO operations and IO operations are much more costlier than compute

operation.

So a simple example of what CPU bound program and IO bound program (())(10:21) is

comes even from our first programing examples that we learn in life like matrix

multiplication verses matrix addition. So in a IO both in the context of a CPU bond program

and Io bound program you know, this scheduling is valid as a concept. Now you see job 1 is

more CPU bound while job 2 is more sort of balance between it has more larger IO operation.

So if I have a mix of CPU and IO bound jobs then this type of a scheduling really helps.

(Refer Slide Time: 10:59)

So what are the scheduling mechanisms? There are three types of scheduling; one thing is a

long term scheduler, which basically is done for batch jobs, right. So I submits some jobs to

night and tomorrow morning I go and collect there is not interactive program, the still you do

in your high performance computing system or super-computing, where you have large job to

be executed large finite element say simulation you go (())(11:22) give night and the

tomorrow morning you collect. So these type of schedulers are called long term, term in the

sense, it is anything more than 10 minutes is a long term scheduler, okay where the program

is going to be assign to the CPU for more than 10 minutes also, we can call it as long term

scheduler.

There is something call medium term scheduler, which is in between short term and long

term and the short term scheduler is something like a what you see on a mobile phone, I click

something immediately something comes and then it is is gone (())(11:51) right. So this is

more for real time share interactive operating systems. These are the short term schedulers are

very very important. Now a long term scheduler is invoked in seconds or minutes once in a

second or minute while a short term scheduler is invoke every millisecond or 10s of

milliseconds, right. So this is a difference. So what we will be, so we will be covering

scheduling algorithms, which are true for both long term and short term scheduling and we

will see how this could work.

(Refer Slide Time: 12:25)

So what is the role of a CPU scheduler to sum up? The role of the CPU scheduler is it, there

be somebody who is running and it should switch from running to waiting state and or it can

switch from running to ready state and it can also switch from waiting to ready state or it can

terminate. So a scheduler for every process it can make one of these decisions, right. It can

switch a process, which is currently at a running state we have waiting state, because it ask

for some service from the operating system. It can switch it from a running state to a ready

state, because it was an interrupt. The process did not ask anything, there was an external

interrupt, so I can move it from a running state to a ready state, I can also switch it from a

waiting state to a ready state because some system call is completed a process actually ask for

a system call when it was running. So I put it on to a waiting state.

Now that system call is finished. So I can go it on to a ready state or the process has actually

terminated or it has done some divide by zero, some exception thing, which it cannot

continue I can the scheduler can go and terminate a process. Now there are two types of

scheduling, non-preemptive and preemptive. These are all operating system topics, but we

(())(13:40) to learn those things now, because these are security implications at a later stage.

What is non-preemptive?

I cannot stop the process when it is executing to an external interrupt, right. So I cannot pull

out the process when it is executing. So that is what we call as non-preemptive unless the

process itself comes out. So (())(13:58) if I start executing a process, I cannot preempt it till it

comes out, right and similarly, there is something call preemptive process in which I can pull

out the process at any point time (())(14:09), okay. So there is a huge amount of security

implications especially when there is a non-preemptive process, because when it goes in (())

(14:17) and I cannot interrupt it, I really do not know what it is doing? It can do lot of things

and it can hide what it has done so that at a later point, it can unhide it and (()(14:27) take it

forward. So non-preemptive scheduling especially of tasks has security implications and we

will look at it in great detail when we go to the remaining part of this course and subsequent

courses.

(Refer Slide Time: 14:41)

S

So now the next thing is there is a scheduling algorithm we will talk about these algorithms in

some depth in the next module, but please to understand that after there is a (())(14:50)

operating system decides that this is the process that needs to go to execution then it gives

that link to the dispatcher and so what will the dispatcher do? The OS code that takes the

CPU away from the current process and hands (())(15:04) it over to the newly scheduled

process is called the dispatcher. So this is responsible for doing the entire task switching,

okay and the dispatcher gives control of the CPU to the process selected by the short term

scheduler or the long term scheduler. In this case, more it will be valid in the case of short

term scheduling. So what it means that I switch context from one process to another process

and then I also switch back to user mode, because the dispatcher if it is say kernel level thing,

the scheduling is a kernel level algorithm. So essentially the dispatcher is also working at the

kernel level.

So now I have to switch back to the user mode and start the program. So the user program

should execute at the user level. Please, note there is a very settle (())(15:46) point here, I

switch to the user mode and then give control to that program. So I do not give control to that

program and then switch ask it to switch to the user mode that is a security vulnerability. So

the dispatcher role is I have decided, the operating system decides which should be the next

job to be scheduled. Now the this fellow the dispatches goes and does all the context

switching, all the saving of the whole process information and collecting the loading of the

new information etcetera and then it will first switch to user mode and then control to the

program. This sequence is extremely important. So these are some small certain things that I

want you all to understand so that tomorrow when we start looking at OS level security, these

points need to be extremely taken care of.

So this is very important that I first switch to user mode and then give control to the user

program. If I give control to the user program and then ask it to switch to means that means

the user program for some point will be running in the kernel mode essentially it has more

privileges and it can create issues. Now, there is of course a latency that is created and that is

very important that distinguishes us between scheduling between threads verses scheduling

between processes. This is dispatch latency is the time it takes so the dispatcher to stop one

process and starts executing another.

(Refer Slide Time: 17:10)

 Now we have already talked about preemptive and non-preemptive. As a process I will link

with (())(17:15) CPU, because I did a mistake is call a trap, I did a segmentation overflow, I

access to a page that does not exist, I accessed a segment, which is I went and start writing

into a segment which is read only, I start writing into a code segment, I start executing from a

data segment my stack has overflown, right. I access a page that is not there right. All I divide

by zero. So these are all called traps and I come out, because once a trap comes immediately

the hardware will detect that there is a trap and it will basically put the go to an interrupt

service routine. Interrupt service routine the context switch automatically to interrupt service

routine.

 Interrupt service routine is a part of your operating system. So the operating system gets

control and then it will basically pull out this process saying why did you do it, right. So this

is basically what we call as a cooperative scheduling a part of a cooperative scheduling, in

sense that when there is a something wrong the process cooperates with you and it comes out.

It can also be that the process themself if they think they have done so much of CPU to want

to give others a chance it can come out. So this is cooperative scheduling where the OS does

not have a control of stopping a process that executing. This cooperative scheduling is also

called as non-preemptive, but a preemptive scheduling is something where a OS goes and

stops a current process and gets it out. How will a OS go and stop the current process. It

cannot stop, because OS itself is a program. It has to execute to stop somebody else but

somebody else is executing.

Now how it does is that it programs an interrupt for example, timer interrupt, right. Timer

interrupt can get out at any point of time. So it goes and programs that interrupt. So when the

operating system is in execution, it is executing on CPU, it goes and programs its interrupt

and then comes out, after it comes out it cannot execute. So it is dormant some other process

will be executing. The hardware interrupt will go at that particular time, since it is program it

will create (())(19:20) and the moment the hardware interrupt goes, the control now comes

back to the interrupt service routine, which is part of the operating system that is how in CPU

an operating system which is dormant can get control over the CPU or get access to the CPU

through what we call as hardware interrupt.

So the keyword is interrupt and this is a hardware level feature that is required for preemptive

scheduling and so what is preemptive scheduling as we will see in the scheduling algorithms

that we have going to see in the next module we will say that preemptive scheduling will stop

a process from running away with the CPU meaning it will halve (())(19:59) the CPU for

eternity (())(20:00) essentially not allowing the other process. So a preemptive scheduling

actually avoids what we call as a starvation of a process. There process will not wait for long

for getting into the CPU. So a preemptive scheduling algorithm can basically help in getting

processes get access to the CPU within reasonable amount of time.

Now when we talk about preemptive scheduling, it brings up new issues of its own like

coordinating, access to shear data and can you interrupt an interrupt etcetera. So these are all

some questions that are coming up which you will answering the subsequent access.

(Refer Slide Time: 20:40)

So this slide basically summaries what I have explained so far, the difference between

preemptive scheduling and non-preemptive. Note that preemptive scheduling is to remove the

process forcefully and get the OS executing and that is possible only by the hardware

interrupt. So you have to program the timer and the timer interrupt will one the operating

system is executing, it has to program the timer and when it comes out then the process is

executing, the timer will generate an interrupt based on which the current executing process

is preempted.

So hardware timer based interrupt is extremely necessary for doing preemptive scheduling. In

non-preemptive scheduling, the running process can only lose (()(21:23) the processor

voluntarily by terminating or by requesting an IO or once CPU given to a process, it cannot

be preempted until the process completes its CPU burst. So this is the difference between

preemptive and non-preemptive scheduling.

(Refer Slide Time: 21:37)

So as I had explained in the previous slides that a job essentially has a CPU burst and IO

burst. So any IO bound program typically has many short CPU burst interlays between IO

burst and a CPU bound program might have a few long CPU burst and we already saw that in

the previous sections that if I have more than one processes that could be executed, the CPU

burst of one can be merged with the IO burst of other and vice versa and basically, you can

achieve good CPU utilization at the same time I can also do with the IO device utilization.

So I can merge the CPU burst of one program with the IO burst of another program and see

those concurrency and so since this is possible, now I need somebody who will tell who

should execute when and so there is a need for coordinating this activity and that is the role of

a scheduler.

(Refer Slide Time: 22:40)

So suppose I want to design a scheduling algorithm. What will the scheduling algorithm do?

So these are all the programs that are waiting. Which of the program should be scheduled

next? It has to make this decision and while making this decision, there are some criteria that

it needs to get out, one is CPU utilization always the CPU should be used, but that alone

cannot be enough criteria, because I have a very big program and I say always that program

will execute we will have maximum CPU utilization, but the other fellows will be dying (())

(23:06) or they will be starving. This is called the starvation.

So other important time that I am looking at this throughput, which is the number of

processes that complete their execution per unit time. The moment I look at throughput and

CPU utilization together, now I have got some notion of reducing the starvation, right. So if I

have a one program that is executing for 100 units of time and I have two more programs

there which is executing for 25-25 units of time then if I just put that 100 units of program

forever, I will get could good (())(23:40) CPU utilization, but the throughput will be just one,

but I can just do that I can finish of 125 another 25 and then this, my throughput now will be

2.5, because within the same 100 units of time 2 programs have completed of 25 ache and

another program, which is you know 100 units 50 units of it is again allocated.

So if I look at throughput and CPU utilization together slowly I am bringing in the notion of

reducing the starvation. The next thing is turnaround time which is amount to time to execute

a particular process. There is also waiting time the amount of time a process has been waiting

in the ready queue, because if it is waiting for something else in this waiting queue. If it is

waiting in the waiting queue for some IO operation, it is depending upon how fast the IO

device can work. So that is not the problem of scheduler. The problem of the scheduler is it

has to keep this fellow if somebody enters the ready queue, it should be sent out as early as

possible. If a process spends more time in the (where) ready queue then the scheduler is not

so effective with respect to that process and then the response time amount of time it takes

from when a request was submitted until the first response is produced, please note that, it is

not the output full output, I say something that fellow say yes I am here and they put some

window saying (())(25:04), we got this right and that becomes extremely important.

The response time is I ask for service how quickly I get a response saying (())(25:14) there

service exists you can, because that gives us more continent in a file save operating system,

somehow if the service could not be met at least some file save action will be taken. So in a

real time operating system this response time is extremely important.

(Refer Slide Time: 25:29)

 So how do we calculate the waiting and turnaround time? The waiting time off for a non-

preemptive process is the start time minus arrival time. So the process comes in, it is staying

in the ready queue that is arrival time and then it starts, after it starts, it never comes back,

because it is non-preemptive thing. It goes and completes. So this start time minus arrival

time is the waiting time on your waiting queue. For preemptive algorithms it is finish time

minus arrival time minus CPU time, right. So after it arrives, it stays on the ready queue and

at times goes the CPU again it comes back again it goes to CPU and again it comes back. So

finish time minus arrival time minus CPU time. So this is the total waiting time. So the

turnaround time waiting time is different from turnaround time. Turnaround time is nothing

but finish time minus arrival time. So this is how we calculate this.

(Refer Slide Time: 26:23)

 So to sum up I need to maximize the CPU utilization, I need to maximize the throughput, I

need to minimize the turnaround time, I need to minimize the waiting time, I need to

minimize the response time. These are all the criteria based on which I need to do my

scheduling algorithm and I can do many things, I can either do min max that how bad can the

worst case seen arrow be, those type of things I can take care, right. So I would like to have a

control over the worst case behavior. So I could design algorithms which will optimize in the

sense that the worst case behavior will not be really worst, I could also design algorithms in

which the average case will be excellent, the worst case can be bad, but it will happen once in

a (())(27:06), the average where you can go and reboot that system etcetera. The average case

would be very good. So I could design skip designing algorithms in which I could have

verities of ways by which I could look to these criteria for optimization, but the most

important thing is a second point.

I need to minimize the variance in measure, I cannot say one time it will be so fast another

time it will be very slow, right. I should be either slow always or I should be fast always,

right. So then only people will get a confidence in your system, if it is so non-predictable

sometime, it is extremely fast sometimes extremely slow then variance is there then the

confidence in your operating system you cannot say it is a slow one, it cannot say it is a

faster, right.

So there should be some determinism in the variance that now my process enters, the time by

which it will come out, there should be some fixed (())(28:03) binding limits and that is what

we say as minimize the variance in this measure. So I could not have these measure one time

it has one time the measure is 100, one time the measure is 0 then I do not know what to do

with this measure. So this is very very important. So these are all the criteria for optimization

and when we start doing this optimization, when we start looking at different ways by which

this criterion could be managed, each way of managing this criterion basically gives me a

different scheduling algorithm.

(Refer Slide Time: 28:36)

The purpose of a system determines the appropriateness of a criterion, see that is very very

important. So as I told you, when I am looking at program right, I am very happy about

throughput, when I am looking at real time system I am not bothered about throughput and

bothered about response time, but when I am looking at a batch right, I am more happy with

that throughput as a programmer simple programme writing a conference paper and

tomorrow morning I need a simulation to come out, I am looking I am interested in the

turnaround time. So different users who use the operating system we have different

perspective of what is efficient scheduling and that is very very important, okay. So typically

people will look at maximizing CPU utilization and throughput and minimize the response

times.

(Refer Slide Time: 29:26)

 So this is where this (())(29:27), okay. So with this we come to the end of this module, the

takeaway from this module is that scheduling important and there are some scheduling

algorithms we will discuss more about the scheduling algorithms in the next module, while in

this module we have talked about some basic principles of scheduling and also some

theoretical framework and certain optimization criteria for scheduling. Thank you.

