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Backpropagation through time

So, that was Recurrent Neural Networks. Now, whenever we propose a network what do

we do next? Training, right. So, what we will look at it back propagation through time.

This is not the title of a fiction and movie or anything; this is an algorithm that we will

see.

(Refer Slide Time: 00:27)

So, before we proceed, right let us look at the dimension of the parameters that we have

and I expect you to tell me the dimensions. So, I will define somethings for you which

are very hard. So, I belongs to R n, so let us be clear about that; s i belongs to R d that

means, the s i is a d dimensional vector and y i belongs to R k which has k classes, ok.

So, now what is U? What is V? D cross k, is it d cross k I am asking Soham? Now I

mean we have be written it as d cross k. And W is?

Student: (Refer Time: 01:05).



D cross t sure; everyone sure, right. So, these are the dimensions. Why am I talking about

these  dimensions?  Whenever  we  talk  about  gradients  what  we  talk  about  partial

derivatives or gradient or something we need to know what is the size of the parameter

with respect to which we are taking the gradient because that is what the size of the

gradient matrix is going to be, right. That is why I am asking you to focus on this.

(Refer Slide Time: 01:31)

Now, how do we train this network? Title of the module. 

Student: Backpropagation.

Backpropagation, ok. How? Why do I have a module if I am only going to tell you about

backpropagation? Do you see any problem with this? Why cannot you just apply the

standard backpropagation (Refer Time: 01:47)? So, we will try to understand this with

the  help  of  a  concrete  example  and  we  will  go  back  to  our  example  of  predicting

characters, ok. 



(Refer Slide Time: 01:51)

So, this is the auto completion task and for simplicity we will assume that English has

only  these  3  characters  d,  e,  p  and then  I  stop  to  indicate  that  the  world  has  been

completed, ok. This is what you are going to consider that my vocabulary size is just 4

that means, I can only predict one of these k 4 classes, k is equal to 4, ok. 

And at each time say I want to predict one of these things. What is the suitable output

function for this task? Can everyone say with probability 99.9 percent?

Student: Soft max.

Soft max, ok. What is the suitable loss function for this task? Small pleasures in life that

is all I get, ok.



(Refer Slide Time: 02:34)

Suppose  we  initialize  U,  V,  W  randomly  and  networks  predicts  the  following

probabilities, ok. So, let us understand what is happening. I fed it d as the input I have

just  started  training.  So,  my  U,  W and  V are  all  some randomly  initialized  weight

matrices, right now, and so it has predicted this as my probability distribution, this is the

predictions that I have got from the network. 

And I also know what is the true probability distribution. What is the true probability

distribution for the first time step? 0 1 0 0 and so on, right you can see it. Second times

that is also 0 1 0 0; third is 0 0 1 0 and the last one should have been 0 0. So, given the

situation and before I talk about learning algorithms, what is the first thing that I need to

define? Objective function, right. So, what is the objective function here? How many

errors do I have? I mean I can make my errors at 4 places, whether I making an error or

not is the separate case but I can have 4 loss functions.

So, then these are the two questions that I am interested in. What is the total loss made by

the model and how do we back propagate this loss and update the parameters of the

model as usual I am ignoring the biases which is W, U and V. So, we can answer these

two questions then we are done, right. If you can do this then we are done.



(Refer Slide Time: 03:53)

So, the total loss, what is the total loss actually? Take a guess, sum of all the loss, right

good. So, just going to be the sum of the loss over the times steps that you are I mean

very logical and what else would it be. And we know that the loss at every time step is,

so this is the loss at time step t hence y t. And what is c actually? The true class at time

step t, right. So, it is would be e at first time step, e at second time step, then p and then

stop, ok, so that what c is.

So, this is we all comfortable with is this is the cross into p loss and I am going to sum at

over all the t time setup that I have. Now, for back propagation what we need is we need

to be able to compute the gradient of this loss function with respect to W, U, V. 



(Refer Slide Time: 04:48)

If I give you your formula for the gradient the rest is straight forward you will just apply

gradient as well, ok. So, let us look at each of these parameters. We will look at the easy

one first which is V. So, what is the derivative of the lost function with respect to V?

Have you ever done this in life?

Student: Yes.

Yes.

When?

Student: (Refer Time: 04:55).

Now, I am asking the date, ok. So, you have done this when you doing backpropagation.

This is the gradient of the loss function with respect to the weights in the output layer

and  we  know  how  to  do  that,  right.  That  is  very  straightforward  and  there  is  no

complication there. And you will see what I mean by complication later on.

So, all I need to do is take this loss function and compute its gradient with respect to V, it

is very simple chain rule which I can update there, apply there and I can compute it

separately for all these guys and I can just sum it up, right. So, this is the easy part. This

is very straight forward. So, where one parameter we are all set, we know how to do that,

right. We can just add up all these gradients, the some lose notation here this is actually



an addition of 4 matrices, right. Each of this I hope is a matrix, is that a matrix or a scalar

or a vector or a tensor.

Student: Matrix.

Matrix, so, we have already seen how to do this back propagation. And this is a smallest

chain possible in the back propagation and we have enough confidence in doing this. 

(Refer Slide Time: 05:56)

Now, let us considered the derivative of the loss function with respect to W. Just take a

minute and see if it is complicated or if it is straight forward to see a lot of W’s in the

figure, ok. So, let us see how to do that, right. 

So, again the loss with respect to W or the derivative with respect to the loss derivative

of the loss with respect to W is going to just be the sum of these 4 or t derivatives. And

by changed of derivatives we can just sum the derivative across all the paths which lead

from the loss function to W, is  that  fine,  right.  Whenever, you want  to compute the

derivative of the loss function with respect to any parameter a recipes to look at all the

paths which go from the loss function to that parameter and some of the gradients across

those paths. How many if have fine with this? What are the paths which are actually

connecting the loss function to W?

Student: (Refer Time: 06:51).



There will be t paths, good. So, let us see we will consider L 4 theta, this is the last time

step.

(Refer Slide Time: 06:57)

So, L 4 theta actually depends on s 4, s 4 depends on what? W and s 3. s 3 depends on

what? W and s 2, S 2 depends on what? An s 1 depends on W and s 0, always assume

there is s 0. What kind of a network is this? What kind of a function is this? What did I

ask to revise? This is not an order derivative. What kind of function is this? 

(Refer Slide Time: 07:19)



So, we have an ordered network with I will give it to you and it is not be to. Say in an

ordered network each state is computed one at a time, right. So, we will first compute s

1, then we will compute s 2 because s 2 depend on s 1 there is no other way we can

compute s 2, then s 3, s 4 and then finally, the last function.

So, now, we have the following situation that the derivative of L 4 theta with respect to

W can be written using this chain rule which is the derivative with respect to s 4, and

then the derivative of s 4 with respect to W. And that is that looks manageable there is

nothing fancy here or is it I see a lot if people that looks manageable, right; everyone is

not (Refer Time: 08:01). 

Student: (Refer Time: 08:01).

Even though you have done the assignment everyone is not; even though you have revise

the assignment everyone is not (Refer Time: 08:06). So, this part we have already seen.

This is not the tricky part. L 4 theta by s 4 is straight forward because it only depends on

this V and so its fine that part we have seen. This is same as computing the gradient of

the loss function with respect to the hidden layer. But now let look at the derivative of s 4

with respect to W. 

(Refer Slide Time: 08:28)



What is s 4 actually? Sigma W s 3 plus b. So, now, if I want to compute dou s 4 by let me

just remove the sigma, right I mean we can always get back the nonlinearity. So, I want

to compute dou s 4 by dou W. So, it will just be s 3, s 3 again.

Student: Depend on W.

Depend on W, right. So, that is the problem with an ordered network. In such an ordered

network you cannot compute the gradient of a s 4 with respect to W assuming that s 3 is

a constant, s 3 is not a constant its again a function of W and W is the parameter with

respect to a computing the derivative, right. That is the problem here. 

So, in such networks the total derivative has two parts, what are these two parts? How

many if you have revise this? What are the two parts called? Explicit and where at least

your language model should be fine at explicit, and what else can it be think on at least

have that much smartness, either you do not read its fine. So, that is going to be explicit

and implicit. What do we do in the explicit case? If you can read the slide we treat all the

other inputs as constant, right. An implicit is summing over all the indirect paths from s 4

to W. So, let us actually try to derive this whole thing, right.

(Refer Slide Time: 09:38)

So, this is what the total derivative looks like. All of you are comfortable with this, right.

I mean this is all we have done this in the assignments I will not go into the theory and



all that. You should be comfortable if you have not revise, you have to be blamed sorry

for that, but I cannot go into the details of that but I still derive the whole thing. 

So, this is what it looks like. The plus here indicates that we are going to treat everything

else as a constant and just take the derivative with respect to W. And then the implicit

part would be this, they are going to sum across all the paths. So, this is a path, ok.

Now, here again we have a total derivative dou s 3 by dou W. So, what am I going to do

for that? Again explicit and implicit; again I have this dou s 2 by 2 by dou W which is

again explicit plus implicit, again dou s 1 by dou W is that fine and then this is finite

because s 1 that is depends on s 0 which has no connection to W. So, this is what your

entire formula looks like. Now, this, sum slide abuse of notation here because what is

each of these actually? Scalar? Vector? Matrix?

Student: (Refer Time: 10:41).

S 4 is? 

Student: S 4 actually vector.

Vector. W is?

Student: Matrix.

Matrix. The derivative of a vector with respect to a matrix is?

Student: Tensor.

Tensor. You cannot do this in your head is it; these 3 sentences is one after the other, ok.

So, for simplicity what I am going to do is I am going to short circuit some of these

paths, right. So, let us I will just tell you what I am going to short circuit. So, I am going

to write just for ease of coming up with the generic formula. The first term I am going to

write as this and this is fair because this is just one, right. The second term also is fine.

The third term I am going to short circuit this path I am just going to write as dou s 4 by

dou s 2 and then dou s 2 by dou W, and again I am going to short circuit these paths and

just write it as dou s 4 by dou s 1 and then this.



The reason I am doing this then I can write it as a very simple summation, where I have s

4 by s k, where k goes from 1, 2, 3, 4 and then I just have the explicit derivative of s k

with respect to W. Just (Refer Time: 11:51) this for the minute and not a minute actually

just 10 second (Refer Time: 11:54). If you have any problems with this let me know, I

will  use  my  standard  trick.  If  you  do  not  understand  this  you  will  not  understand

anything afterwards, no one is falling for that, ok. Everyone is comfortable with this, ok.

So, we have a formula for dou s 4 by dou W, and we have dealt with the tricky situation

where we have these multiple paths in an ordered network and hence we are to split into

explicit and implicit derivatives. So, we have done all that (Refer Time: 12:20) math and

you have come up with the simplified formula for this, ok. So, finally, this is what we

have.

(Refer Slide Time: 12:23)

You noting it down, right? 

Student: (Refer Time: 12:28).

[laugher] I do not see you noting it down, ok. So, now, let us look at dou s 4 by dou W,

that is exactly what we have derived on the previous slide and that was a summation of t

terms, and for as t is equal to 4, ok. And in general L t by, the this was for L 4 so in

general if I want to do L t then it is going to be this which I am replaced by t, and this

which  I  have  replaced  by this  formula.  Everyone  is  fine  with  this?  What  were  this



means? Everyone is fine with this formula, right. This is generic formula with respect to

any time step. The only thing is that on the previous slide we are derived with respect to

s 4, now I have just come up with the generic form, ok.

So, this algorithm is called backpropagation through time because now we have taken

care of this ordered network and you have a way of computing this gradient, once you

have  this  gradient  your  life  is  simple  because  now we  can  just  supply  the  gradient

descent update, ok. So, we have dealt with V, we have dealt with W and as the name

suggest who will deal with U, you ok, fine. So, you will to find out what it is for U, ok.

By its going to be something very similar, and I do not want to do it because that is not I

mean going to be something very similar you can do it on your own. But I want to focus

on something which is important. 


