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Lecture - 105
The problem of Exploding and Vanishing Gradients

And that takes us to the Problem of Vanishing and Exploding Gradients ok. So, you want

to see what is a problem with this back propagation through time, which could lead to

certain interesting situations?

(Refer Slide Time: 00:24)

So, we will focus on this dou s t by s k and let me just go back. So, remember that this

formula had this dou s t by s k, right, where s t could be the last time step and s k could

also be the first time step because you are summing over all the time steps, right.



(Refer Slide Time: 00:27)

So, you could have a term which is s T capital T which is the last time step the first time

step and the derivative of the last time step with respect to the first time step, right. So,

that is a situation that we are dealing with. So, we will consider one such generic element

which is dou s t by dou s k and we will just try to expand it. So, remember I have done

this short circuiting, so I am now just going to expand it again. So, this is going to be t by

t minus 1, t minus 1 by t minus 2 and so on up to k plus 1 by s k ok or I can write it as

this generic formula. Everyone find with this, I have just replace this as a product and

written it more compactly.

Now, let us look at one such term here dou s j plus 1 by dou s j. Now, just to confuse you

guys from next slide I will go over to dau s j by s j minus 1 or not confuse you I just did

not pay attention to this. So, instead of s plus 1 and j and I am going to do j and j minus

1, right, it remains the same does not matter.



(Refer Slide Time: 01:33)

So, we are interested in this particular quantity. So, let us see what this derivative is. And

remember  that  in  the  final  formula  we have a  product  of  these  quantities.  So,  I  am

looking at one such term in my final product. So, just to jog a memory a j is the pre-

activation which is given by this and then s j is the hidden representation after activation

after the nonlinearity which is given by. So, let me just write it down as s j by s j minus 1

can be written as this chain rule which is first compute s j with respect to a j and then a j

with respect to s j minus 1. Everyone has find. So, far at this point please raise your

hands if you find ok. 

Now, let  me just  write  down a  j  and s  j  explicitly. So,  remember  that  a  j  is  this  d

dimensional  vector  which  are  the  entries  a  j  1,  a  j  2,  up  to  a  j  d  and  s  j  is  the

corresponding activation applied vector which has these entries sigma a j 1, a j 2 and so

on  ok.  Now,  first  question  what  is  this  quantity?  Scalar?  Vector?  Metric?  Tensor?

Numerator is a.

Student: (Refer Time: 02:44).

Denomitor is a.

Student: (Refer Time: 25:45).

That is why it is a matrix ok. So, that is the matrix that I am interested in. If I can give

you that matrix and we are kind of done so, it help me filling in this matrix.



Tell me what this matrix is going to look like even before we start filling it ok. You are

right,  but it  does not matter  because you will  have U x and then you are taking the

derivative with respect to s j minus 1, right so, this does not matter ok. So, everyone gets

that you will have a U x j here, right but that does not matter because you are taking a

derivative with respect to s j so, that is a constant.

So, dou s j by, dou a j is what? What does this matrix look like? How many of you see a

diagonal matrix? Ok good so, it  is straightforward,  right. What is the first entry it is

going to be dou s 1 by sorry dau s j 1 by dau a j 1, what is that going to be? It will be

something. But let us look at the second entry dau s j 2 by a j 1 what is this going to be?

What this going to be?

Student: 0.

0, because it does not depend on that, right. So, now, you can see how the full matrix will

look like all the of-diagonal elements are going to be 0s and diagonal elements are going

to be sigma primes everyone fine with this ok. So, this matrix I am going to just call it as

diagonal sigma prime a j this is a diagonal matrix which I have. And what is dou a j by

dou s j minus 1? Scalar? Vector? Matrix? Scalar.

Student: (Refer Time: 04:17).

Matrix. Which matrix?

Student: W (Refer Time: 04:18).

W, right ok. So, now, for some reason I am interested in the magnitude of this. Why I am

interested in the magnitude of this? For some reason I am interested, let us see why. We

will become clear that for some reason I am interested in.



(Refer Slide Time: 04:40)

And here I will write how I will write the magnitude of this, right. So, this is the norm

that I am interested in. So, I have already said that this is actually equal to whatever is

inside this norm. So, I can just write it as this norm so, I have norm of c is equal to norm

of a b which is less than equal to.

Student: Norm a, norm b.

Norm a norm b, this is fine ok. Now, let us look at the norm of this. Now, going to say

that sigma a j is actually a bounded function because, we are using sigmoid or tan h or

something so, it is a bounded function ok. So, that mean sigma dash a j is also going to

be bounded actually, can you tell me what is the bound for the logistic function for sigma

dash a j. 

If sigma is logistic function what sigma dash what is the bound for sigma dash. If I say 1

by 4 how many of you will agree with that? How many of you have a problem with that?

If you do not understand this you not understand anything after that ok, still do not have

a problem. So,  for the logistic  function the  bound is  actually  1 by 4,  the maximum

derivative that you can get if you have this curve so, then that would be 1 by 4, ok.

What about the tan h function? And that actually happens at this point, right 0.5, so 0.5

into 0.5 is 1 by 4. What about the tan h function? The bound is 1, right. So, this is, this

clearly an upper bond on these things the derivative is going to be an upper bounded



thing that means, this magnitude is actually going to be upper bounded by something and

I will just call it as lambda sorry as gamma. So, this quantity is bounded and I am going

to call that bound as gamma.

What about our weight matrix? It is again bounded, right we have real weights we do not

have like blowing we do not have very large weights it is all bounded. So, it is still going

to be some upper bound on this and I will call this magnitude as gamma, right. So, this

quantity on the left hand side, I can say that it is less than equal to some gamma into

lambda.

Now, let us look at the product. So, this is a quantity that I was interested in and this is

actually a product of various such quantities. So, what is it going to be now? Can you go

to the next step? It will be gamma into lambda raise to t minus t minus k, right, t minus.

It basically as t minus this product as t minus k terms, right. So, it will be gamma lambda

raise to t minus k. Now, if gamma or lambda, or rather gamma into lambda if it is greater

than 1, what will happen? What will happen to the series? Explore. If it is less than 1?

Student: (Refer Time: 07:20).

It will vanish, right so, you get that. So, that is why you have this vanishing an exploding

gradients problem ok. But why what if this vanishes what vanishes? Let us go back. So, I

have shown you that this quantity could vanish right if this vanishes the entire gradient

could vanish. And if the gradient vanishes what would happen?



(Refer Slide Time: 07:39)

Student: No updates.

No updates and you just stuck where you are. If the gradient explodes what happens?

Think in terms of the WB plane,  you suddenly have a very large gradient  what will

happen is just gone way far from where you are right. Now, because your update is W is

equal to W minus eta into this gradient and this you have got a very large value.

 Now, I just going to move somewhere very far from where you are and that is never go

where your suddenly jump to a different universe ok. So, that is the problem in training

recurring  neural  networks.  You  could  have  this  problem  of  exploding  or  vanishing

gradients, and we have done a mathematical derivation of why you have this problem,

ok.



(Refer Slide Time: 08:16)

So, one trick to do that is to avoid this is remember these are t minus k terms and the

problem appears when your t minus k is or rather you are t is close to capital T, angle k is

closed to 1, right. In those cases you will have many terms in the product you will have

as many as T terms in the product, so even if your product is even if this product is

slightly less than 1, if you raise it to capital T it is going to vanish, right. So, can you

think of solution for this?

And the last module in the title of this lecture was truncated back propagation. Can you

think of a solution for this? So, you do not back propagate through all the time steps yes,

use an approximation that if you are at time step n. We are just going to look at n minus k

time steps and we are not going to look all the way back, right that is the common trick

used to avoid exploding and vanishing gradients.

What is the other thing that you could do to avoid exploding gradients? So, remember

that you have some gradient, right. To think in terms of vectors we have some gradient

vector W whose magnitude is very large, what will you do to avoid exploding gradients?

In gradient descent your always interested in the direction so, what can I do? 

Student: (Refer Time: 09:35).

Just normalize it, right. So, you can just do this so, typically what is done is that you can

it  is  a  normalizing  it  you  can  just  say  that  you  will  clip  the  gradient  so  that  it  is



magnitude is less than a certain k, right. So, normalize it in such a way that it is grade it

is magnitude becomes k. So, this is something typical that you will see when you use

tensor  flow  where  you  have  something  with  says  clip  the  gradients  to  a  certain

magnitude. And there are different ways of doing this, so I just give you an intuition that

this  is  what  is  used  for  magnitude  but  there  are  other  things  that  you  can  use  for

magnitude. So, just go back and look at that ok.

So, that is a back propagation through time with exploding and vanishing gradients and

then the solution for that or a part for that is truncated back propagation ok. We have we

have not yet done with this problem, we will again look at other solutions for handling

this which will lead us to LSTMs which is Long Short Term Memory cells and gated

recurrent units, so that we will do in the next lecture. 


