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 (Refer Slide Time: 00:11)

Before that I will just go into Some more Gory Details about the math, this is not to

scare, but just to make you more comfortable that we can actually deal with something,

which is not very straightforward or very neat as compared to what you are seen so far.

(Refer Slide Time: 00:25)



So, I just go back to the formula, which I had for computing the gradient of the loss

function with respect to W, and I cannot repeat enough times that, all these notations are

actually a bit of abuse of notation, because these are gradients and not partial derivatives.

So, I should actually be using this notation, but for ease of explanation, I use I stick to

my original notations ok.

So now, let us look at each of these quantities here and tell me the dimensions of these

quantities? Let us start with the left hand side, what is the dimension of this? W was what

matrix? What is I am talking about the circle entity, what is the what is the dimension of

that? K cross d.

Student: (Refer Time: 01:09).

D cross d.

Student: (Refer Time: 01:11).

D cross d someone n cross d.

Student: (Refer Time: 01:13).

N cross d and n cross k are the two options, which are left. W is the recurrent weight. So,

W is what dimension?

Student: (Refer Time: 01:20).

D cross d.

So,  what  is  this  gradient,  d  cross  d?  Ok what  about  this  fast?  S  t  what  the  hidden

representation, so that was d dimensional. So, what is this d cross 1? Ok what about this?

Why do you guys still struggle with this?

Student: (Refer Time: 01:42).

D cross d and this d cross

Student: (Refer Time: 01:44).



D cross it is very straightforward right, what is the dimension of numerator? what is the

dimension of denominator that is all right.

(Refer Slide Time: 01:53)

 So, you see the kind of multiplication that you are doing here. Say of d cross, d 1 cross

d, d cross d and then d cross, d cross d ok. Let us look at each of these quantities and see

if you are actually comfortable in implementing these. Are you comfortable with this?

The loss function with respect to the hidden representation, we have done this enough

times in back propagation, what about this? We just saw a formula for this right. So, we

know how to compute this quantity, we have seen this in back propagation, this is the

derivative of a scalar with respect to a vector and we are very comfortable in computing

this.

This was slightly tricky, but we just derive this formula on the previous slides, everyone

with that, what about this? This is a tensor, how do we compute this tensor? what is our

standard recipe focus on?

Student: (Refer Time: 02:38).

The little guy, 1 element of this tensor and then you can generalize somewhere right. So,

this is the tensor and we will just see that, this just to make you all comfortable is this not

like just to intimated you with all these large sized tensors, but I am just trying to show



that, this is all easy, this is not hard ok. So how do we compute this? All the other terms

are covered.

This is the only one, that we do not know.

(Refer Slide Time: 03:03)

 So, we will just look at 1 element of this tensor and it is going to be S k p by W q r.

So, let us just see that you have S k as this vector and you have W as this matrix. So, I

am considering one such weight, which is, W p comma q and one such element from

here, which is S k sorry. So, q r and I am considering one element from this, which is S k

p. So, I am trying to compute the derivative of one element of the vector with respect to

one element of the matrix. So, this is going to give me one entry, in my tensor and that

entry is going to be what? P q r, how many of you are fine with this? Ok fine.



(Refer Slide Time: 03:53)

So, now recall that a k was equal to W into S k minus 1 plus b and S k was sigmoid of a

k. I think again, I have miss that U into x k, but that will not matter because, that is not

there in the derivative ok. You are fine with so far?

(Refer Slide Time: 04:11)

So now, let us look at this, because the other 2 terms do not matter. So, I just look at a k

is equal to W into S k minus 1. So, this is the matrix way of writing it now I am looking

at one of these elements which actually comes, from the multiplication of a row and a

column the highlighted row and the column everyone gets this ok.



Now so, I can write it as a k p is actually equal to this summation, which is nothing, but

the dot product of this row with this column ok. Now S k p is just the sigmoid of that. So

now, if I want to compute S k p with respect to W q r, I can just write the chain rule that

S k p with respect to a k p which is straightforward and then a k p with respect to W q r

and I already have a formula for a k p, how many of you are fine so far? Please raise

your hands high up, if you are fine ok. So, what is the first term going to be? Sigma.

Student: (Refer Time: 05:10).

Sigma prime of a k p and what is the second term going to be? This is what, the second

term is now, what this is lot of terms here, which of these terms would actually remain?

Only the once where, only the terms where i is equal to.

Student: (Refer Time: 05:28).

R and.

Student: (Refer Time: 05:30).

P is equal to q. So, only that term will remain. In that case, it would be this right and in

the other cases going to be 0 right. So, now, you have one element of this tensor and you

have it as a very generic formula, you can just fill in all the elements of the tensor right.

So, what does this tensor look like? It is a very.

Student: (Refer Time: 05:52).

Sparse tensor right that is all I wanted to convey ok. So, this is again the same thing

right, is that fine? So, even though it is a nasty looking tensor, if we just break it down to

one  element,  it  is  going  to  be  very  easy  and  now  from this  element,  you  can  just

reconstruct the entire tensor. Do not worry, I am not going to ask you to implement this,

but if someone were to, maybe at some point, then you should be able to do it right, that

is where we will end today. 

So, we have finished recurrent neural networks and the next thing that, we are going to

look at is LSTMs and gated recurrent (Refer Time: 06:25) ok.

Thank you.


