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Proof of Convergence

In this module we will talk about the Proof of Convergence for the Perceptron or the

Learning Algorithm that we saw in the previous module.

(Refer Slide Time: 00:21)

So, we have some faith and intuition that it  actually works, we just need to formally

prove it  that  it  actually  converges right. So,  that  is  what we are going to  do  in this

module.



(Refer Slide Time: 00:31)

So, before that a very few very simple definitions. So, if you have two sets of points P

and N in an n dimensional space and we call say that these points are absolutely linearly

separable, if there exists some n plus 1 real numbers which has w 0 to w n; such that

every point which belongs to P right, P is the case where the output is 1.

Then these set of weights satisfy this condition right and every point which lies in the

negative set the set of weights satisfy this condition right. So, nothing very different from

what has we have been saying. So, far it is just formally defining it right.

Now, our proposition is that, if the set P and N are finite and there is a fixed number of

points in that which was the case in the toy example that we were doing and which will

be the case in most examples that, we do and linearly separable  right.  The perceptron

learning algorithm updates the weight vector ok. Before I go there right ok, let me not

give you the definition and let me ask you the definition right.

So,  now I  have  given  this  definition,  the  first  definition  and  given  this  part  of  the

proposition. Can you tell me what do I need to prove if I need to prove that the algorithm

converges, that  is  one  way of  looking  at  it, but  what  was  happening in  that  wrong

argument which was I was making that it continuously kept toggling right. That means, I

am not making a finite number of updates right I have to keep changing again and again

and this process continues in a loop right.



So, that is how I am going to define convergence that the perceptron learning algorithm

updates a weight vector of finite number of times right, it only needs to update it finite

number of times and it will reach a configuration such that now it is able to separate the

P from the N ok; that is what the proof of convergence means right.

So, in other words if you are going to pick up these vectors randomly from the set P and

N cyclically, as we were doing in the toy example, then a weight vector w t is found after

a finite number of steps which will separate these two steps, these two sets right. So, that

is what we are trying to prove. So, that is the definition of converge, does it make sense?

Right. .

(Refer Slide Time: 03:02)

So, proof is on the next slide and it is going to take me around 5 to 10 minutes to prove

it. So, just stay focused all right. So, here is a few set up right. So, I am going to, before I

go to the actual proof  I  am going to make a set up  so  that it becomes easier for us to

prove it right. So, the first thing that I am going to say is that, if there is a point which

belongs in negative set then the negative of that point belongs in the positive set and that

is very clear, because if the point belongs in the negative set then w transpose x is less

than 0.

But then w transpose minus x would be greater than equal to 0 right.  So, I  take the

negative of the point, I can just put it in the positive set. So, instead of considering these

two different things P and N I am just going to consider one P prime, which is an union



of P and all the N points negative ok, will the set up clear. If this is a setup then what is

the condition that I need to ensure for every point in P dash.

Student: (Refer Time: 03:57).

W transpose p should be greater than equal to 0 right. So, I do not care about the negative

case, I have just made everything positive now and it is, I am not done anything wrong

here, it is just a simple trick. And now this is how the algorithm will look in this setup,

these are the inputs with label one inputs with label 0 N minus contains a negation of all

the points in N and P prime is a union of these. Now again I start  by initializing w

randomly, while convergence I will do something, I will pick a random P from P prime.

Now what is the, if condition.

Less than 0.

Student: (Refer Time: 04:35).

Do I need the other if condition.

Student: No.

No right, because everything is now positive and the other small thing that I am going to

do is, I am going to normalize P. So, that again does not mean, because we are talking in

terms of angles and I am not changing the direction of the vector, I am just shrinking it

right. So, I am just or maybe scaling it, also I am just making it unit norm. So, that does

not change anything right. So, it is still everything still holds.

And in particular you can see here right. So, if this condition was true, this condition will

also be true. So, so far just I am done some simple tricks to make things easier for me

later  on,  so  now  P  has  been  normalized. Now  remember  that  this  data  is  linearly

separable; that is what we started the proposition. If P and N are linearly separable then

the perceptron learning algorithm will converge  right. So, now, if P and N are linearly

separable, irrespective of whether we have the perceptron learning algorithm or not what

do we know?

Student: (Refer Time: 05:34).

That there exists.



Student: Line (Refer Time: 05:37).

There exists a w star which is the solution vector  right,  there exists at least one w star

which is the solution vector right;  such that it  will  separate the P points from the N

points. So, this vector which we do not know, but we just know that it exists, so you can

refer to it. So, we will call this w star fine. Now we start the proof.

(Refer Slide Time: 05:56)

 

So, w star is some optimal solution which we know exists.

But we do not know what it is right. Now suppose you had a time step t. So, remember

that this algorithm is going on while convergence. So, you have time step 1 2 3 you are

picking up points. So, we are at a time step t, at which you pick up a random point p i

and you find that the condition is actually violated. So, this should actually be less than

0, if I know the condition is violated. So, now, what will you have to do?

Student: (Refer Time: 06:26).

W is equal to.

Student: (Refer Time: 06:29).

W 1. So, I will just call it the new w w t plus 1 is equal to the old w plus p i. Now what I

am going to do is I am going to consider the angle beta between w star and w t plus 1. I

do not know what w star is, but we can still assume it exists and make some calculations



based on that right. So, what is the angle between w star and w t plus 1, its beta and what

is the cost of that angle this 

Student: (Refer Time: 06:54).

And remember that we do not have w star here, because we had assumed that it is the

normalized vector right. So, we do not need that bit, this is actually equal to 1. So, now,

if I just take the numerator, w star in dot product w t plus 1 now I am going to expand w t

s w t plus p i fair; that is exactly what I did on the previous step, is it fine.

Now, now what is p i actually, it is. So, what you had is you had these P 1 P 2 P 3. My

hand writing is really horrible and up to P n right. So, I have just picked one of these p

i’s. Now what I am going to define is. Now suppose this is my, these are my p i’s right.

So, these are all the vectors that I have. Now suppose I have this w star, suppose this was

the w star that I am interested.

Now, for each of these I could compute w star P 1 w star P 2 and so on up to w star P n

right and I could sort them. Now what I am doing is that for whichever of these points w

star p i is the minimum ok, I am going to call that value as delta. Suppose w star P 1 is

the smallest quantity out of w star P 1 w star P 2 w star P n right, and I am calling that

quantity delta.

So, I have this quantity here and my delta is the minimum of all the possible values that

it can take. It can make w star P 1 P 2 up to P n, so delta is the minimum quantity. So,

here I have an equality.



(Refer Slide Time: 08:45)

Now, are you with this? This is the minimum quantity right. So, any p i that I put in here

it is always going to be greater than or worst case equal to delta fair ok, fine.

Now, again this w 2 itself I could write it as w t minus 1 plus p j, because that also would

have come up from some update in the previous step. Again this is there which I could

call it as delta and still retain the greater than equal to here, fine. So, let us see where are

we heading with this right.

Now, notice that we do not make a correction at every time step, when I was running that

toy algorithm I was not making a correction at every time step. We were only making a

correction at those time steps for which the condition was violated. So, now, if I am at th

time step, maybe I have made only k which is less than or equal to t corrections. At max I

would have made t corrections, but it could have been less than that also.

So, now every time we make a correction we are adding a value delta to this right. So, at

the time step t what would happen, I had started off from w naught I have reached time

safety and I have made a case that, I  have not made t updates I have made k less than

equal to t updates right. So, how many deltas would get added?.

Student: K delta.

K delta. So, I  could say that with respect to w naught where I had started from, this is

what this quantity is, is that fine, anyone has a problem with this ok.



(Refer Slide Time: 10:19)

So,. So, far what are we shown right, we started with this, this condition was true again

not less than equal to and hence we made the correction and this was the point that we

picked up at the t th step and thence we made that correction.

And we also showed that the numerator is actually greater than equal to this quantity

right,  we  showed  it  by  induction  fine. Now  let  us  look  at  the  denominator  and

particularly let us look at the denominator squared, is a step right.

This is actually w t plus 1 dot product w t plus 1, but w t plus 1 can be written as w t plus

p i, is this. This bracket needs to disappear right, is that fine. Now what is, what is this

quantity.

Student: (Refer Time: 11:15).

No.

Student: (Refer Time: 11:17).

That is less than equal to 0. So, now, can you guess what is the next thing that I am going

to write right.

Student: (Refer Time: 11:30).



That is correct, yeah it is a negative quantity. So,  that is going to be less than equal to

this. So, that is fine and what about p i square or this term.

Student: (Refer Time: 11:44).

Because this is less than right that is why.

Student: yeah (Refer Time: 11:52)

Correct is this fine ok. Now what is p i square?

Student: 1 (Refer Time: 12:00).

One. Now can you guess what I am going to do by induction?

Student: k.

K; that is. So, what is w t square again right. Just this w t plus 1 square was w t square

plus 1, w t square is going to be w t minus 1 square plus 1 right and how many such ones

will get added k of those right, starting from w naught.

(Refer Slide Time: 12:36)

So, what have we shown, the numerator is greater than equal to this, the denominator is

less than this. Now if I put them together I actually get that cos beta is going to be greater



than equal to the numerator over the denominator. Now what is this quantity proportional

to k, k square, k cube square root of k, k by 2?

Student: Square root of k.

Square root of k right, you have, I mean roughly speaking you have a k here, you have a

square root of k here. So, I could roughly speaking say that it is proportional to square

root of k. So, as k grows what will happen to cos beta, it will grow and that is fine right,

it can keep growing.

Student: (Refer Time: 13:31).

Only until one right. So, cos beta is going to be proportional to k what is k? The number

of updates that you make. Now if I were to take that degenerate case which you guys

were hinting at, where that it will keep changing again and again, what will happen to k?

It will keep going to infinity can that happen.

Student: No

No, because cos beta will blow up right and that is not allowed. So, k has to be finite, so

that cos beta stays within its limits right. Hence are we done, how many if you think we

are done, how many if you are satisfy that we are done, it is not a trick question that we

are done. Please we are done.

(Refer Slide Time: 14:29)



So, yeah. So, this says that we can only have a finite number of such k updates that we

make and after  that  the algorithm will  converge, is  that  ok.  So,  we have a  proof  of

convergence. Now coming back to our questions this is where we had started at one

point, what about non billion inputs, so perceptron allows that right. We took I M D B

rating and critics rating as an input. Do we always need to hand code the threshold?

Student: No.

No, in our perceptron learning algorithm are all inputs equal, no we now assign weights

to input. What about functions which are not linearly separable? We still do not know

right. So, that is where we are headed now, not possible with a single perceptron, but we

will see how to handle this ok. So, far the story is clear to everyone ok. So, we will end

this module here. 


