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Lecture – 03
Sigmoid Neurons, Gradient Descent, Feedforward Neural Networks, 

Representation Power of Feedforward Neural Networks

We are in lecture 3 of CS7015. And today we are going to cover the following modules,

we are going to talk about Sigmoid Neurons,  Gradient  Descent,  Feedforward Neural

Networks, Representation Power of Feedforward Neural Networks.

(Refer Slide Time: 00:31)

So, let us start; so, here are some acknowledgments. So, for one of the modules I have

borrowed ideas from the videos of Ryan Harris on “visualize back propagation“ they are

available on YouTube, you can have a look if you want. For module 3.5, I have borrowed

ideas from this excellent book which is available, online it is the URL as mentioned in

the footnote. 

And I am sure I would have been influenced in borrowed ideas from other places and I

apologize if I am not acknowledge them probably properly. If you think there are some

other sources from which I have taken ideas and let me know I will put them in the

acknowledgments, ok.



(Refer Slide Time: 01:02)

So, with that we will start with module 3.1 which is on sigmoid neurons. So, the story I

had is that it is enough about Boolean functions, right?

(Refer Slide Time: 01:10)

Now, we have done a lot of Boolean functions, but now we want to move on to arbitrary

functions of the form y is equal to f of x; where x could belong to R n and y could belong

to  R.  So,  what  do I  mean by this?  So,  let  me just  explain  this  with the  help  of  an

example. So, I will again go back to our oil mining example oil drilling example; where

we are given a particular location say in the ocean and we are interested in finding how



much oil could I drill from this place, and that is what I would base my decision alright

whether I want to actually invest in this location or not.

And then what we are saying is that this could depend on several factors. So, we could

have x 1, x 2, x 3 up to x n, right where this could be the salinity of the water at that

location.  So, this could be a real number, this could be the density of the water it is

average density. This could be the pressure on the surface of the ocean bed and so on and

so forth, right?

So, each of these values independently belongs to the set of real numbers, right? So, each

of this is a real number and we have n of these. So, together they belong to R n right. So,

I can read that I have n such real numbers, and I could just put them in a vector and say

that I have a input x which belongs to R raised to n, ok.

So, we have this x which we can say belongs to R n. And in this particular case, we want

to predict y, we want to take this as an input and predictor y, right? And what is y in this

case? You want to predict the quantity of oil that we could mine. So, what does R y

belong to again a set of real numbers, and it could be some gallons or litres or kill of

water right. So, this again belongs to R. So, these are the kind of functions that we are

interested in now.

We want a function which takes us from I am having this x, which belongs to R n right it

is a vector of dimension n, and takes us to a value belonging to R right. So, you clearly

see that this is different from the case when we had n variables each of this was just

Boolean, right. So, these were only 0 one inputs now we have real inputs, and these are

the kind of functions that we are interested in.
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Now, can we have a network which can represent such functions? Now, what do I mean

by represent such functions? We already spoke about this when we were doing Boolean

functions, ok. So, what do we mean by representing the function? We mean that if I am

given a lot of training data, right so, I am given these x 1 x 2 each of these belongs to R

n, right? And I am also given the corresponding labels. Now I want a network which

should be able to give me the same predictions as is are there in my training data.

So, it should be able to take any of these x is as input, and it should give me the same y I

corresponding to it. And I am saying approximately which means I am with some error

rate, whether if it is within some to with as long as it is close to the actual value I am fine

with it. So, that is what I mean by a network which can represent such functions, is that

working definition of representing clear? Right, so, that is a very similar to the definition

that we were used for Boolean functions, right? We had said that we should be exactly be

able to get the truth table the network should be able to represent the truth table exactly.

So, that is very similar to the definition that I am using here, ok.
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And then before we do this, right before we come up with a network which can do this

for arbitrary functions, we have to graduate from perceptron’s to something known as

sigma neurons.  So,  please remember  this  overall  context  that  we dealt  with a lot  of

Boolean functions, we analyze them carefully and we saw that we could come up with

these networks which could represent arbitrary Boolean functions, right?

And they could represent them exactly as long as we have one hidden layer. Of course,

the catch was that that hidden layer could grow exponentially. Now we want to graduate

from Boolean to real functions; that means, you have a real input of n variables, and one

or more outputs and you should be able to represent this exactly right. So, that is where

the transition is where so, that is the story that we are looking for, ok.



(Refer Slide Time: 05:30)

So, let us start so, recall that a perceptron will fire, if the weighted sum of it is inputs is

greater than the threshold, right? Just recall that fine.

(Refer Slide Time: 05:38)

So now, I claim that the thresholding logic which is used by a perceptron is actually very

harsh. Now what do I mean by that? Let us see. So, let us return to a problem of deciding

whether we like or dislike a movie, right. That is the same problem that we have been

dealing with. And now consider that we base our decisions only on one input; which is

the critics rating which lies between 0 to 1, ok. And this is what my model looks like. It



takes the input as the critics rating, I have learned some weight for it, and my threshold is

0.5,. What does this mean? It means that if for a given movie the rating is 0.51 will it

predict like or dislike like. So, then I should go and watch the movie, what about a movie

for which the critics rating is 0.49, dislike. So now, you see what I mean by harsh, right?

So, both these values are very close to each other, but for one I say I like it, for the other

I say that I would not like it, right. So, it is not how we make decisions, right you would

have probably said something equal for both the movies, right you would have not given

such a drastic decision.

(Refer Slide Time: 06:52)

So, why is this happening? So, you might say oh this is a characteristic of a problem that

you  have  picked  up,  maybe  that  is  the  critics  rating  which  is  between  0  to  1  or

something, but I want to convince you that this is not a characteristic of the problem that

I have picked up. But this is something to do with the perceptron function itself. So, this

is  what  the  perceptron  function  looks  like,  right.  So,  this  sum of  all  the  inputs  the

weighted sum of all the inputs I am calling it by a quantity z, right? And this is what I am

going to plot on the this axis, so, this is my z axis, ok.

Now, what does the perceptron say that? When this value of z becomes greater than w

naught or minus of w naught it will fire, and when it is less than minus of w naught, it

will not fire that is what it says. So, this is a characteristic of the perceptron function

itself it is going to have this.
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Sharp decision boundary that whenever your sum crosses this threshold you will say 1,

and whenever your sum does not cross this threshold you will say 0. So, in this  toy

example over the movie critics it just happened that this was 0.5. And so, it was saying

yes for 0.51, and it was saying no for 0.49 right. So, this will happen for any problem

that you pick up, ok.

(Refer Slide Time: 08:06)

So, to counter this we introduce something known as sigmoid neurons, and this is just a

smoother function or a smoother version of the step function, you see that, ok?



How many if  you know what a sigmoid function,  what is the formula for a sigmoid

function? Quite a few good, and here is one such sigmoid function which is called the

logistic function. So, remember that sigmoid is a family of functions, these are functions

which have this s shaped, logistic function which I have shown here is one such function

and the other function that we will see in this course is something known as the tan edge

function right. So, let me just get into a bit more detail with this logistic function.

I  just  want  you to understand it  properly. So,  this  quantity  here remember  we were

writing it  as w transpose x,  right?  Which was summation  i  equal  to 0 to  n,  w i  x i

remember this, right? So now, I am just going to consider this to be 1 over 1 plus e raised

to minus w transpose x. Now I am going to ask you some questions and try answering

those.

What  happens  when  w  transpose  x  tends  to  infinity.  What  happens  to  the  sigmoid

function?

Student: 1.

One and that is exactly what is happening here as this tends to infinity as this keeps

growing, right? So, remember this axis is z which is the same as w transpose x, right this

is w transpose x, ok. So, as it tends to infinity, your sigmoid goes to 1, what happens if w

transpose x is minus infinity.

Student: 0.

0 and that is exactly what is happening here, right. And what happens when w transpose

x is equal to 0, half right? So, this is that value corresponding to half, is that clear? Ok so,

that is how a sigmoid function behaves fine.
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Now, we no longer see a sharp transition, it is a very smooth function, and the sigmoid

function lies between the values produced by the sigmoid function rate, what is the range

that they lie between?

Student: 0 to 1.

0 to 1, what is another quantity of interest that you know which lies between 0 to 1?

Probability; so, that is one advantage of sigmoid functions. So now, you can interpret the

value given by a sigmoid function as a probability, right? So, what does it mean in our

movie example again? So, it  just tells  me in those 2 cases, that with 50 one percent

probability I like the movie or with 49 percent probability I like the movie. So now, this

is not very drastic or very harsh, right I am not saying yes or no I am not committing

myself, I am just giving you a number which is proportional to how much I like the

movie. So, it can be interpreted as a probability, ok.
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Now here’s  the  overall  picture  it.  So,  this  is  the  difference  between  the  perceptron

function and the sigmoid function. So, notice that here we had this if else condition, right

which was leading to that sharp boundary.

Now, here we do not have that defence condition, we just have a function which is a

smooth function, ok.
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And here is another picture, so, this is not smooth not continuous and not differentiable,

everyone  agrees  with  that?  It  is  not  smooth here,  right  it  is  not  differentiable.  Here



whereas, this is smooth continuous and differentiable. And the contents that we covered

today it will be very important to deal with functions; which are smooth continuous and

differentiable, ok.

So, for lot of this course calculus is going to be the hero of the course lot of the things

that we do will be based on calculus. And in calculus always if you have smooth and

continuous and differentiable functions they are always good right. So, that is why we

want to deal with such functions ok. So, with that we end module 1.


