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So, welcome to lecture 4 of CS7015, the course on deep learning. Today, we will talk

about feed forward neural networks and back propagation. So, quick recap of the story;

so far it, so, we started with mp neurons. We saw there were some problems with the mp

neurons.  They could handle only Boolean inputs  and Boolean outputs and if  I  show

needed we hard coded. So, from there, we moved on to perceptrons which allowed for

real inputs real outputs and sorry real inputs and binary outputs. And we also learned an

algorithm for learning these weights and parameters right. So, we need there was no need

to hand code these parameters anymore.

But then, we found that, for a single perceptron, there is a limitation. It cannot; it can

only deal with functions which are linearly separable. So, then we went on to a multi-

layer  network  of  perceptrons  and  we  proved  by  illustration  that,  it  can  handle  any

arbitrary Boolean function; whether linearly separable or not, the catch is that you will

need a large number of neurons in the hidden layer, right. Then we also observed that

perceptrons  have  this  harsh  thresholding  logic.  So,  which  makes  the  decisions  very

unnatural;  it  is  0.49, it  is negative;  0.51 is positive;  so, you wanted something more

smooth.

So, the smoothest approximation to this step function which is the perceptron function

was a sigmoid function. Sigma is a family of functions and we saw one such function

which  was  logistic  function.  And  then,  we  saw  that,  it  is  very  smooth;  now, it  is

continuous and differentiable.

Now, for  the  sigmoid  neuron  on  a  single  sigma  you  know  and  we  saw a  learning

algorithm which was gradient descent, And we proved principally that it will always go

in the direction where the loss decreases right; so, that is what is the basis for gradient

descent.



And then, we graduated from a single neuron to a network of neurons and made a case

that such a network of neurons with enough neurons in the hidden layer can approximate

any arbitrary function right, ok. So, I have told you that, it can approximate any arbitrary

function. What does that mean? And what is the thing in the network that does all this?

All the tower functions and the tower functions depend on weights and biases. So, there,

in that illustrative proof, again we were adjusting the weights and biases by hand right?

We knew that we wanted these very tiny tower functions and we were doing it.

Now, from there, where should we go? 

Student: (Refer Time: 02:39).

We need an algorithm to learn these weights and biases right.  So,  that  is  what back

propagation is. So, today I am going to formalize these feed forward neural networks. We

just did it by illustration the other day. I will introduce you to the terminology and see

what the input outputs are and so on. And then, we will look at an algorithm for learning

the weights in this feed forward neural network, ok.

(Refer Slide Time: 03:03)

Let us begin. So this, a lot of this material is inspired by the video lectures by Hugo

Larochelle on back propagation. He has a course on neural networks.

It is available on YouTube; you can check it, ok. So, let us first begin by introducing feed

forward neural network, right.



(Refer Slide Time: 03:18)

So, what is a feed forward neural network? The input to the network is an n-dimensional

vector so; that means, my input belongs to R n, but fine. The network contains L minus 1

hidden layers. Where do you already know what hidden layers are right? We have been

defining  that  terminology  since multi  layered  perceptron.  So,  you have  these hidden

layers and there are L minus 1 of these and then it has one output layer containing k

neurons, ok. Those are the feed forward neural network looks like. What is missing here?

Student: (Refer Time: 03:57).

The weights, right.

So, each neuron in the hidden layer, ok, before that each neuron in the hidden layer and

the output layer can be split into 2 parts right. So, I will call the first part as the pre

activation and the second part as the activation. Have you seen this plate before right?

What does the pre activation do? 

Student: Aggregation.

Aggregation and what does the activation do? 

Student: Non-linearity.

Non-linearity, right? So, we have this pre activation and activation at every layer and a i

and h i are vectors. Is that correct? Because, this entire thing or rather this part is h 1 and



this part is a 1. Both of these are vectors, right. And for this discussion, am going to

assume that, everything till here belongs to R n, ok.

So, the input was R n and all the hidden layers also have n neutrons. Is that fine? So,

please pay a lot of attention to this couple of slides because, this is going to stay with us

for the rest of the lecture and perhaps 2 more lectures and even for the course alright. So,

this is very important that you understand this; the way we are defining a feed forward

neuron network.

(Refer Slide Time: 05:08)

The input layer can be called as 0th layer. What I mean by that is that, I could refer to

this as h 0, ok. There is no a 0 h 0 here because, there is no pre activation, activation. You

are just given the input. So, I just call it as h 0 ok. And the last layer can be called as h of

L, right? Whatever you get from this green part, you will call it as h of L. Ok what is the

dimension of h of L? R raised to k. It belongs to R k, because I have said here that, you

have k neurons, each corresponding to k classes, ok.

Now, we have weights between the input layer and the first hidden layer. Now, can you

tell me this belongs to R n. This also belongs to R n. So, what is the dimension of W 1?

N cross n, right? Because it contains weights for connecting each of these inputs to each

of these hidden layers; there are n here n there right. So, it is n cross n.



And what are the dimensions of the bias? N. One corresponding to each of the hidden

inputs,  fine.  And this  is  only  for  up  to  this  layer  because,  till  here  I  have  assumed

everything is n.

(Refer Slide Time: 06:23)

Now, what about the output layer? n cross k and the biases k, k dimensional ok. So, this

is what the network looks like. But now, I have to give you some function. So, I have just

I have shown you a diagram, but what does it mean mathematically? Because, remember

that, we are always interested in writing something of the form y is equal to function of

x, right. And that is not well defined yet, ok.



(Refer Slide Time: 06:49)

So, let us start defining that. Ignore the red portion for now, ok. I will go over it. So, each

of these activations right or rather the pre activations is given by b i plus W i into h i

minus 1. So, what it means is that, these activations take inputs from the previous layer,

multiply by them by weights and also add the bias. Is that clear? So, let us see it, right.

For example, if I look at a 1 which is this vector. So, that is 3 dimensional and assuming

it is 3 dimensional for simplicity.

So, it is a 1 1, a 1 1, a 1 2, a 1 3 right? And that is equal to how do you get rid off this? b

1 1 b 1 2 b 1 3 plus this matrix multiplication is this clear to everyone ok. I know it is

trivial, but am still going over it right. So, let us not ok. And then, how do you do this

matrix multiplication? Row was multiplied by the column i.  So, this is what you get

right? And in the end, I can write it as this, right? And this looks very similar to what we

have been seeing throughout it from a mp neuron to perceptron to sigmoid neuron and

now this case, right.

So, it is just an aggregation of all your inputs or weighted aggregation of all your inputs.

That is the case which I want it to know; and that is obvious now. So, you understand

what these are right.

So, this is R n. In our case, we have assumed n equal to 3. What is this? I will keep

asking till this is completely fine with everyone. R n and this is?



Student: (Refer Time: 08:30). 

n cross n and this is?

Student: (Refer Time: 08:34). 

n cross 1 n cross n I mean R n sorry is it fine? So, everyone understands the operation

happening here. It is a weighted aggregation of your inputs. So, every guy here is a

weighted aggregation of all the inputs, ok.

(Refer Slide Time: 08:47)

Now, after that I do h i of x is some function of a i of x, ok. What does this mean? So,

this is again a vector, right? I have assumed that, it is 3 dimensional. So, these are the 3

elements of h i; so, these are the 3 guys. Now, these are some function of these light blue

guys, ok. Now, how does that function operate on the vector? It operates element wise;

not all functions on vectors are element wise. But this particular function, we are going

to do element wise.

That means, that h 1 1 is equal to g of a 1 1, h 1 2 is equal to g  of a 2 and h 1 3 is

equal to g of a 1 3 right, where if I take g of a 1 3, one of the functions that I could

choose is the sigmoid function. So, it would just be 1 over 1 plus e raised to minus here.

So, what is happening is I am taking this value and passing it to the sigmoid function to

get oh sorry am taking this value and passing it to the sigmoid function to get h 1 1

taking this value passing it to the sigmoid function to get h 1 2 right.



So, the key thing to understand here that, this is a element wise operation, right? It is not

operating on the vector. That does not make sense. It is operating on every element of the

vector, right ok. And g is called the activation function.

(Refer Slide Time: 10:02)

It could be logistic, tan h, linear anything right. So, we will see some of these functions

later on ok.

Now, the activation at  layer, I  sorry they are supposed to be activation at  the output

layer..The activation at the output layer is given by the final function which is f of x is

equal to O of a of. So, let us see; so, this is a 3. In our case, L was equal to 3 because, we

had L minus 1 hidden layers and the Lth layer was the output layer right; so, this is a L.

So, this is what I have computed here; that light green part of the figure that you see right

now, based on that, I want to produce an output, right.

So, that is, someone had asked me a question that why do we always choose sigmoid?

Because, sigmoid will clamp the output to 0 to 1. What if I want to predict the amount of

oil which will not be between 0 to 1, right? That is why, for the output, we will use a

spatial function that will call the output function and later on, I will show you that it

depends on the task at hand ok. So, it is going to change with the task that we are going

to do, right. So, we are just going to say that, the final output which is h of L is equal to

some function of the pre activation at that layer. Is this terminology clear to everyone?

How is each function operating, is that clear to everyone? Ok.



(Refer Slide Time: 11:22)

And we will see some examples of the output activation function right. Now just for

simplicity  am going to  remove  the  x’s from the  bucket  right;  so,  instead  of  calling

everything a i of x h i minus of x and so on. I will just call them a i h i and so and so, that

just simplifies things, but we know that everything is a function of x. Because, x is the

input and that passes through some functions and we get the final output, right. So, this is

the notations that we are going to use. Is the dimension of everything that you see every

variable that you see here completely, clear to everyone?

Dimension of a i, b i. W. h i x, everything is clear ok. And the output layer has a slightly

different dimension than the other layers because, there we have k classes as opposed to

n neurons everywhere else, ok, fine. Now, I need to put this in the paradigm that, we saw

for supervised machine learning. What were the five components there? Data.

Student: Model.

Model.

Student: Parameters.

Parameters.

Student: Learning.

Learning algorithm.



Student: (Refer Time: 12:29). 

Objective function right ok. Everyone remembers that ok?

So, I said that, we will do deep neural networks and we are trying to write this y hat as a

function of x, but then, what I gave you is just a diagram from which this is not clear

whether y hat is actually a function of x. How many of you think y hat is actually a

function of x? Very few, ok.

(Refer Slide Time: 12:52)

So, let us see what exactly is our model assumption here, right. So, the question let me

repeat the question just to be clear. So, I said that they are given some data we do not

know the true relation between y and x we make an assumption that y is related to x

using some function f right and it is has some parameters and then we like to try to learn

the parameters of that function. So, what is the function here?

 So, what is your model? What have you assumed as the model? Can you write y as a

function of x? If yes, what is that function? How many of you have the answer? I think

you have your answer, ok. I think I cannot wait more. So, I will give you the answer.

Then it will become very obvious ok. So, this is how y is a function of x, right. So, let us

see what is happening. I took the original x which was this, I transformed it, added b 1

that was the dash at layer 1. 

Student: (Refer Time: 13:56).



No, this thing.

Student: (Refer Time: 14:00).

Reactivation at layer 1; I passed it through the activation function right, ok.

Now, again, let us be clear about the dimensions? What is the dimension of this? 

Student: n.

n. What is the dimension of this? n cross n. So, what is the dimension of this product? 

Student: (Refer Time: 14:21).

n. What about this? So, what is the product the final dimension of this?

R n. Now, you are passing it through a function g that function is operating element wise.

So, what is the output dimension?

Student: R n. 

R n. So, this is again R n, ok. Now this.

Student: (Refer Time: 14:42). 

So, now you see the whole story, right. So, now, this n cross n guy multiplies with this n

guy again. You get a vector again pass it through a non-linearity was it. So, high it is

obvious now, right. You just take an x; just note down all the transformations that you

have done. That is what a function does right. It passes it through the through first a

linear transformation,  this is a linear transformation, then a non-linear transformation,

then again linear non-linear and so on, right.

So, just see how far we have come from where we started off, right? We started off with

simple things like W transpose x, right? That was the perceptron model where we were

taking decisions based on W transpose x and we were saying y is equal to 1. If this

quantity  is  greater  than  something,  y  is  equal  to  0;  if  this  quantity  is  greater  than

something right, that is why, we started off with we made it slightly more complicated by

doing this. This was sigmoid neuron.



Now,  from  there,  where  have  we  gone  to  this  right?  So,  we  have  increased  the

complexity of the network with great complicity. Complexity comes great?

Student: (Refer Time: 15:46). 

No  power,  right?  We  have  already  seen  the  representation  power  of  deep  neural

networks, right. So, it comes from this complexity that you have you have a lot of linear

and non-linear transformations, right? That adds to the complexity of the network. It has

more parameters at each linear transformation you have some parameters and you are

also using a lot of non-linearity. So, that is the reason why deep neural networks are so,

powerful right do you get that? Ok, ok. So just to impress again, right.

So, any machine learning algorithm that you have you should be able to write it in this

form right, that y is a function of x with some parameters and then your job boils down

to learning these parameters, right. It just happens that here, y is a very complex function

of the inputs. Is that clear? Ok. So, I am not deviated from the original story. I am still

being  able  to  write  y  as  a  function  of  x  with  some  parameters,  ok.  What  are  the

parameters? 

Student: (Refer Time: 16:42).

All the W’s, all the b’s, right. So, W L to W n and b 1 to b L.

(Refer Slide Time: 16:44)



And the algorithm that we are going to see today for learning these parameters is called

gradient descent, but we will use it with back propagation, where back propagation will

help us to compute gradients. It is ok; it does not, it does not make sense at this point.

That is what the lecture is supposed to be about,  right.  So, and what is an objective

function? 

Student: (Refer Time: 17:07).

Loss function. So, I could just go with this loss function, right ok. There is an error here.

I thought we corrected this; there is a summation. So, actually these are vectors, right.

So, this does not make sense. So, you should have summation j equal to 1 to k y i j minus

y i j. Does that make sense? So, this is the vector y hat ok. For the i th example, it will be

called as y hat high i which will have k elements, right. So, y hat i 1 y hat i 2 up to y hat i

k, right.

So, that is what my predictions are and I will have the corresponding true vector also. I

am trying to take the difference between them which is going to be an element wise

difference. Everyone understands the error in the slide? How many of you do not get it?

How many of you get it? If you do not get it, please raise your hands. It is a minor thing.

I  can correct  it,  ok.  So,  is  the paradigm clear  now? Ok. And how does  deep neural

networks fit into these this paradigm? Ok.


