
Deep Learning
Prof. Mitesh M. Khapra

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module - 4.4
Lecture - 04

Backpropagation (Intuition)

So, we are in module 4.4 of this longest lecture on Backpropagation and feed forward

neural networks. So, we introduced a feed forward neural networks, we saw the input

layer hidden layer and the output layers. And we saw that the output layer actually the

output function depends on the task at hand. And we considered two main tasks, one was

classification the other was a regression.

For regression it made sense to use a linear layer at the output. Because we did not want

the outputs to be bounded, they could be any range. And for the classification problem

we  realized  that  we  want  a  special  kind  of  output,  because  we  are  looking  for  a

probability distribution over the output. And for that we use the softmax function. And in

both cases we used a different kind of a loss. For the regression problem the squared

error loss made sense, because we predict some values and we want to see how far we

are from those values.

But for the other case the classification we realize that it is a distribution, so maybe we

could  use  something;  which  allows  us  to  capture  the  difference  between  the  true

distribution and the predicted distribution.



(Refer Slide Time: 01:20)

And therefore, we had this figure emerging which was depending on the output, whether

it  is  real  values  or  probabilities.  You  will  have  different  types  of  output  activation

functions and different types of losses.

And of these combinations today we are going to focus on softmax and cross entropy,

and our aim is to actually find these gradients, right? Remember there are many of those

we have seen this large matrix which had many such partial derivatives, and we want to

find that entire matrix. I hopefully do it in a way that it  is not a repetitive we could

compute a large number of partial derivatives at one go.

So,  before  we  look  at  the  mathematical  details  we  just  get  an  intuition  for

backpropagation.



(Refer Slide Time: 02:11)

And then we will get into the gory details of how to actually compute these gradients and

partial derivatives. So, this is the portion that we are in we are intended to ask these two

questions. And this is where we are.

(Refer Slide Time: 02:21)

So now this is what our network looks like, this is clearly much more complex than that

single neuron that we had, and which had only 2 weights W and b that was very easy to

compute the gradients there. Now imagine that I want to compute the gradient of the loss



function, right? And let us assume it is a classification problem then what is the loss

function minus log of y hat.

So, this is the loss function, and we want to compute the derivative of this with respect to

one of these weights in the network. And am deliberately taking something which is

much farther away from the loss, but why do you say why do I say it is much farther

away, it is right at the input layer, right? And the loss is somewhere at the output layer.

So, we want to compute this gradient.

(Refer Slide Time: 03:10)

Now, to learn sorry you want to learn this way, to learn this weight we know that we can

use gradient descent. We are all convinced that this gradient descent algorithm which I

have shown here, as long as we put all these variables or all these parameters that we

have into theta.

We can just run the gradient descent algorithm and compute, them the only thing that we

will need is this partial derivative with respect to all the weights in the network. And in

particular with respect to this weight that I am interested at, ok.



(Refer Slide Time: 03:40)

Now so,  we will  now see how to calculate  this,  we will  first  this  is  only to get  the

intuition, right. So, we will first think of a very simple network, which is a very deep, but

the thin network, ok, it has many layers, but it is a very thin network, here you see what I

mean by a thin network, ok. Now this is what I am interested in. Can you tell me how to

compute this? This looks like a chain. So, it is justified the user chain rule of derivatives,

right. So, what would the chain rule look like?

You want to compute the derivative of this with respect to this. And you have done this

in high school, right. So, you have functions of the form of sine of cos of tan of e raised

to sine of x, right and this is exactly how this chain is right, you have some function of x

followed by another function of x, another function of x function of x function of x and

so on. You just keep making a composite function of the input. We actually wrote down

that function if you remember. It was just one function applied after the other function,

right or a very composite function. So, you just need to apply the same idea here. Does

this look ok? So, we take we go step by step. So, I am almost accounting for every shade

of color here.

So, dl theta by d y hat, then dy hat by d a L 11, there is only one neuron here, then this

with respect to the sorry h 21, then h 21 with respect to a 21, a 21 with respect to h 11, h

11 with respect to a 11, and then a 11 with respect to W 11.



So, I just traversed down the chain in the reverse order, this is how the chain rule works,

right? Anyone has a problem with this? It is straight forward? And now what I have done

is for convenience I have just compressed the chain. You see the red part and the green

part, I have just compressed this weight. So, that and this is again something that you

have done in high school if you have this you could just write the chain as the first and

the last it. So, this is what you can do, and I also compress this other chain, and am going

to use these kinds of compressions later on.

So, what am trying to impress on you is that, if I want to go from here to here, right that

is what my intention is. If somehow I have already travels from here to here, then I can

just reuse that computation? That is the idea which I am trying to impress on it. I do not

need to follow the entire chain every time, I can do these partial computations up to a

point, have you seen this something similar idea somewhere else? Dynamic program is

something like that. So, you have just computed up to a certain point, and then it is reuse

the value for further down the chain.

So, that is what we are going to do. And same for all the weights, right. For each weight

the chain size would be different  depending on where it  lies  in the network,  for the

weights which are very close to the output layer the chain would be very small, makes

sense? So, this is the intuition and we will see the intuition a bit more.

(Refer Slide Time: 06:40)



So, let us now understand this in the terms of the wide complex network that we are

using,.

(Refer Slide Time: 06:47)

So, what actually is happening is that, we are at a certain stage; that means, we have

some values of W's and b’s ok, at the initial stage we just have these W knots and b

knots. But let us assume that we have done some training, and we are at a certain level

we are at Wt at time step t and bt at time step t, for all the weights inverse. Now we feed

it a training example, we do this entire compute computation, what do we get at the end?

We get y hat which is a function of this x that we have fed it. But we also know this true

y, right? We know the true value we know y hat.

So, we can compute the loss function. So, we compute the loss and to our surprise we see

that the loss is not 0, we are getting a non 0 loss; that means, the network has not yet

learnt properly, if the weights and biases are still not in the right configuration that we

want them to be in right. So now, what do we do? We go on this path of investigation, we

want to find at who in this network is messing up things? There is someone who is

causing this problem, because of which I am not getting the desired output. And we are

on our quest is to now find out who this guy is who is responsible for this. So, what

would you do? Where would you start? The output layer.



(Refer Slide Time: 08:11)

Because the output layer is the guy who give you the output, right. So, go and talk to

him, and we say that hey what is wrong with you why are you not producing the desired

output, right? Now what is the output layer going to tell you? In very civil language, I

will say I cannot do anything boss, I mean, I was just given some weights and inputs

from the previous layer, and those weights and inputs were messed up.

So, there is nothing which I can do go and talk to them. So, who will it directors do? It

will say that I am just as good as WL hL minus 1, and be it because these are the guys

that I completely depend on. If these guys were ok, then I would have been fine. So, we

then go and talk to these guys, that what is wrong with you.



(Refer Slide Time: 08:58)

So now they say fine Wn and bL take the responsibility, they are the nice guys, they say

we are the weights, we are supposed to make a, we are the ones who are responsible for

the adjustments in the network. So, we have failed to do our job properly, and I think we

should get adjusted right. But then hL will resist, it will say it is not my fault, why will it

resist? Because it against again depends on the previous activation layer.

So, till then point as to what? The W's and b’s in the previous layer, right. And you see

how the investigation is now proceeding where will we reach? Well keep going down the

network, we are talking to everyone in the network, we are talking to every dark green

guy every light green guy, every dark blue guy every light blue guy, we are also talking

to all these weights and biases. And in the end what do we figure out? The responsibility

lies with all the weights and all the biases. They are the ones who are responsible for this.

Now, ok, but now we find out that this is also one of those weights which is responsible,

and this  is  also one of  these weights  that  is  responsible.  But it  was  have been very

difficult for us to talk to them directly. So, then what are we going to do? Instead of

talking to them directly which is this, we will talk to them through the chain rule. So, we

will talk to the output layer that is exactly how what we did maybe went to the first guy

that we knew, that guy pointed out to the previous hidden layer, that guy pointed us to the

previous hidden layer. And then finally, we get to the weights.



So, this talking to is fine, but where do derivatives figure out in this, why are why is the

language derivatives,  why are we not talking in English or Hindi or something else?

What does the derivative tell us? So, talking about gradient descent like what we saw in

gradient descent, but in general what does the derivative tell us? If I change this a bit,

how much does my loss change.

So, that is how much this guy is responsible for the loss, because if this is very sensitive,

even adjusting  a  bit  of  this  I  could  drastically  reduce  the  loss.  So,  that  is  what  the

derivative tells us, that tells us how sensitive is the loss function to the weight or any

quantity  with  this  with  respect  to  which  am taking  the  derivative.  That  is  why  the

language is of derivatives? Is that clear? Is the intuition fine to everyone?

(Refer Slide Time: 11:29)

So now will convert this intuition into actual math and try to figure out. How to compute

every guy along the way, right? And we will  use this  idea that we have made some

partial computations and then well, use it for the rest of the chain. So, we have made this

much, at some point, we will reach where we have made this much, and then you could

use it for the rest of the chain. In fact, we will start right from here well start with this

guy and then keep expanding the chain.

So, the rest of the story is going to be about computing 3 quantities. Can you tell me

which are these 3 quantities? Gradients with respect to the output units, gradients with

respect to the hidden units, and then gradients with respect to the parameters, ok. So,



these are the 3 things that we need to do, if we do this we have everything in the chain,

and we are done, ok? And the other thing that we need to do is, we cannot sit down and

compute this for every element, right, we want to have it in a generic fashion, where

instead of talking about W 1 1 1, W 1 1 2 and so on.

We should at least be able to talk about W 1 W 2 and so on. So, that means, we have only

3 matrices  and 3  biases,  right  at  least  at  that  level.  So,  we have  to  do  a  collective

computation instead of just computing for every guy. So, instead of looking at scalars,

which is what we are doing when we are doing gradient descent for W naught and v

naught? We were just computing the update rule for W and b, we want to now do it for

vectors and matrices.

So, that is that is the transition that is going to happen. And our focus is going to be on,

what cross entropy and softmax why is that important, because that is the loss function.

So, that is the quantity that am going to take the derivative, if I change the loss function

all the gradients are going to change. Are all the gradients going to change? Only the first

guy will change in the change, all this should remains still same, right? Modulus some

conditions, but largely it should remain the same right, unless you change something in

between. So, is the set up cleared everyone.

So, that is the end of this module.


