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Back Propagation: Computing Gradients W. R. T. Hidden Units

Now, we will go to the Gradient with respect to the Hidden Units.

(Refer Slide Time: 00:16)

So, this portion. So, you already see there is a repetition, here and I do not need to treat

each hidden unit separately I can just have a formula for the hidden unit and then I could

compute it for all the hidden units ok. So, that is what our aim is. So, let us do some

simple stuff first and then you will come back to it.



(Refer Slide Time: 00:33)

So, suppose you have a variable x you compute 2 functions from that one is x square, the

other is x cube ok. I will call this as y 1 and I will call this as y 2 and I take y 1 and y 2.

And compute a z, which is say log of y 1 by y 2 ok. Now what I am interested in is this,

what is the answer for this? How do you get this? This is a fair question to ask y 1 y 2 are

functions of x, z is a function of y 1 y 2 hence z is a function of x. So, I can compute this

derivative and I can ask for this derivative, how would you compute it? If I cannot really

do this right.

So, if this path did not exist, then it is trivial it is just the chain rule along one path, but

now you have 2 paths.  So,  what  will  happen add them right.  So,  can you tell  me a

formula for that? So, let me know if this makes sense to you does this make sense now

let me complicate this a bit just let me just do it as y 3 now.

Student: (Refer Time: 02:15).

What will happen?

Student: (Refer Time: 02:16).

That is all right? So, you see that if there are multiple paths you can just add up the chain

rule across all these paths right? That is what chain will across multiple paths does ok.



(Refer Slide Time: 02:28)

 

So, with this we will go back to this figure. So now, I am interested in I am interested in

going to the hidden layers, again I will do this to bit calculation where I first asked for

this guy and then I will ask for the light blue guy right and am going to look at 1 unit at a

time. Now what is the, what am I interested in the derivative of the loss function with

respect to say d h 2 2, right? The second unit of the second hidden layer.

(Refer Slide Time: 02:58)

Now, what I am going to say here is exactly what I had written on the previous slide this

was our final function, right which was z. So, z was sorry again I have not chosen my



variables well ok, but if. So, we had exactly the same situation, right? Which is which

you see here ok. So, we will just have to sum up the derivatives partial derivatives across

all the paths, which lead from this guy to this guy and there could be as many paths as

there can be, but I do not care I will just sum across all those paths. In fact, actually here

there are not just 2 paths because we have always assumed there are k classes. So, there

are actually k of these paths right.

So, this form this is exactly the formula which I wrote on the next slide right this one, but

just written in terms of the network that we are dealing with ok. So, you can just go back

and look at this, but as long as you understand this figure you from my point of view we

can go ahead ok. So, everyone understands this figure that we just need to compute the

derivatives across all the paths and add them up ok.

(Refer Slide Time: 04:03)

So now let us start we again the same recipe we will compute it with respect to one guy

and then go towards the gradient ok. So, what is this now? Ok let me explain right. So, dl

theta there are k of these guys between right. So, there are k paths. So, this summation

has to happen over k paths just as you told me when there were 2 paths the summation

was 2 3 paths to 3 that is k paths of the summation over k guys. The derivative with

respect to each of these guys and the kth the mth unit rate that is the index that I am

iterating over ok and then the derivative of this guy with respect to whatever you are

interested ok.



That is just that there are only 2 nodes in the path in the chain, but there are k such

chains, how many of you exactly get this? Ok how many of you have a problem want me

to repeat this? You have problem oh many of you ok, good please do this. So, I am

interested in this quantity; that means, I am interested in the partial derivative of this loss

function with respect to this guy.

(Refer Slide Time: 05:06)

And this guy is nothing but h ij that much is clear is the gth unit of the ith hidden layer.

In fact, this is actually h 2 2. So, my I is equal to 2 and j is equal to 2 ok. Now I just

made a case on the previous slide that, if you have such a function which first computes

some intermediate values, and then your final function is computed based on all these

intermediate  values  right.  And  now  you  are  trying  to  find  the  gradient  the  partial

derivative of this with respect to the original input that you had ok.

So, then what you will do is you will sum across all the paths that lead from this guy to

the output ok, how many such paths are there? You already see 2 such paths here right,

but I am saying there are k such paths, because there are some other nodes here which I

have not drawn we have already said that in the output layer we have k nodes right? So,

there are k paths. So, that takes care of the first bit that the summation is going to be over

the k paths ok.

Now what is each of these paths composed of? This intermediate value and this quantity

that we are interested in ok, first we will take the derivative of the out of the loss with



respect to this intermediate value, what is that? That is the unit in the, that is the unit in

the previous layer or the next layer rather. So, I am interested in i. So, I am looking at the

unit in the next layer hence i plus 1 right, because that is what comes in my path the next

layer is what comes in my path. We have always the special case right, that this guy feeds

into k guys, but all the other hidden units before that feed into n guys right.

So, that is let us just keep that complication aside for the minute and we just look at this

case ok, is that fine ok. So, we have agreed there are k paths and each path is composed

of these 2 nodes, from the last loss function to this intermediate value and then from this

intermediate value to the quantity of interest ok. And why is this i plus 1 because the next

node in the path when I am at the ith layer.

So, I will be feeding to the I plus 1 th layer right? And in fact, I will be feeding to all the

nodes in the i plus 1 at layer, that is why I am taking or all the k paths right; and then that

node which is this node with respect to the quantity, that I am interested, is this clear?

Now right this is very similar to the toy example which I did I just have k paths now

instead of 2 paths there is it clear now sure fine.

So, let us move ahead, now what is which of these quantities do we already know, is

there any quantity that we know? This one, why? Because in this special case i plus 1 is

actually equal to L right. Because we are feeding into the last layer and they have already

seen how to compute the partial derivatives with respect to the last layer.

So, this quantity is known we do not know this for the generic case yet, but we will get

that, but for this special case when we are feeding into the last layer we know this does

everyone get this? Ok now do we know this quantity. So, what you have told me is that

we know this quantity because that is what we have computed in the previous module.

Do we know this quantity? We have to compute it; can you compute it? Ok let us just do

it right. So, let us assume that this hij that am dealing with is actually h 2 2 fine. Now

what  is  a i  plus 1 m? Actually  which are the elements  there a 3 1 and a  3 2,  I  am

assuming that I only have 2 units in the output layer ok.

So, my m is equal to 2. Now is this fine, this is how the next layer is related to the

current hidden layer plus biases ok. Now what am I interested in one of these guys ok.

Let me take one of these guys. So, can you tell me what is a 3 1, first row multiplied by

the first column there is only one right plus b 2 1 ok.



Student: (Refer Time: 10:11).

Sorry.

Student: (Refer Time: 10:12).

B 3 1 ok yeah fine. Now let me just clarify something what is this in terms of variables

ijk m, what is this? This is i this is j this is k this is m. This is i plus 1 right ok. This is one

of the ms that I am dealing with. Now I want the derivative of this with respect to hij ok.

In fact, I want it with respect to h 2 2 where this is i and this is j is this clear? What is this

derivative, w 3 1 2 everything everyone fine with this; ok? Now help me find this, what

is this ijk and i plus 1, what is this? This is coming from the m, how many of you see

this? Because that is the unit that you are connecting to and this is j. So, what is the

formula; how many? As many as the number of neurons in the next layer a bias will be

connected to all the neurons in that layer right? Everyone gets that right there are only 2

units.

So, there will be only 2 guys ok. So, what is the formula for this W i plus 1 mj, everyone

comfortable with that fine? You can just go back and look at this and it should be cleared

right. So, whenever you are dealing with vectors and matrices right if you are really good

at it you can imagine the entries and figure out what is happening. If you are not good at

it do not be lazy just work it out, right? You just need to write down this product and at

the end remember everything is always element wise and you are never dealing with a

vector or matrix now just dealing with the individual components of them.

So, you should always be able to compute these derivatives or partial derivatives with

respect to the individual components, and that is exactly what I did here, right? Just work

it out if you just write it out then you will always get it if you cannot, but eventually try

to get to a point where you can just visualize it, but if you cannot at least try to work it

out ok.



(Refer Slide Time: 12:25)

So, this is what it will look like ok. Now consider these 2 vectors one is this vector what

does this vector look like, this is a collection of all the partial derivatives. So, this is just

a collection of all the partial derivatives nothing new we have already seen this. Now

what is this vector actually? In fact, I have started with the matrix and am saying look at

this vector, what does this mean? This i plus 1 is just the layer in which the matrix is

right. So, that index we do not really care about, for a matrix what we care about is the i

comma j index ok. Now what does this dot comma j mean? All the is belonging to j; that

means, the dash column jth column everyone gets this, this is all the is or all the entries

belonging to the j th column.

So, it is effectively just the j th column. So, it is 1 comma j 2 comma j up to k comma j

right. So, these are 2 valid vectors, now tell me what is this quantity going to be? This is

the dash between 2 vectors dot product dot product between 2 vectors is a.

Student: (Refer Time: 13:43).

Is a summation over element wise thing ok. I have said enough now try to connect this is

a very simple match the column that you will ever get in your life, try to connect this to

something which is already there in the slide. How many of you think the answer is this?

This into this plus this into this plus this into this and just write it as a formula you will

get this everyone sees that ok. So now, I have a compact way of writing one of these

entries ok.



(Refer Slide Time: 14:10)

One of these guys I have a compact way of writing this, it happens to be the dot product

between 2 vectors one of them is the gradient, but do I know this already; do I know this

quantity already? In this special case yes, because I plus 1 is equal to L and that I have

already computed this of course, I know right because these are the weights that I am

dealing  with,  where  do  I  go  from here?  This  dot  yeah it  means  anything from that

column so; that means, the entire column.

Student: (Refer Time: 14:48).

Ah no these are weights right. So, this is a weight matrix it has columns and rows. So,

am talking about the j th column. So, I fixed the value of j. So, I am talking about the j th

column, but I am not telling your given ith entry there am just telling you all the entries

there that just means the j th column you can take this offline ok. This is very simple I

will take it offline ah. Now where do I go from here.

Student: (Refer Time: 15:16).

I plus 1.

Student: (Refer Time: 15:20)

No in this specific case are we done.

Student: (Refer Time: 15:27).



Where are we right now with respect to one unit, where do we want to go? The entire

thing. So, what is the quantity that I am interested in gradient with respect to always say

with respect to h i right.

Student: (Refer Time: 15:44)

Where i is 2 in this case this special case ok. What is that going to be collection of all

these guys that  you have already computed ok. Now simplify this.  What is  this  first

column of the matrix? Multiplied by the same vector the second column of the matrix,

multiplied by this vector, the nth column of the matrix  multiplied by this vector this

reminds you of something very, very difficult. This is a very, very complicated matrix

multiplication right?

First row of the matrix multiplied by a column the second row of the matrix multiplied

by column, how many if you get this; right? So, this is can you tell me what this is Wi

plus 1 transpose.

Student: (Refer Time: 16:52).

Perfect right? So now, you see that this entire quantity we can compute in one go by

using a matrix vector multiplication right. So, that is what I meant; when I was saying

that we should not be doing these unusual computations, but we able to compute that at

one row right. So now, we can just do this matrix vector multiplication and get this entire

quantity ok. Now what is still missing in this module.

So, what is the special case that I have assumed, I told you that I already know these

quantities, but only if i plus 1 is equal to l. I need to tell you this in the generic case ok.

So, we are almost there except that I do not know this when i is not equal to L or i is less

than equal to L minus 1 ok; that is the case that I am looking for.



(Refer Slide Time: 17:38)

So, that is again very simple, again what will I do? I will compute it with respect to ok.

What is this? This is the guy that I am interested in the generic i not the L th one right the

generic i. This is what the vector looks like the gradient vector looks like. I want each of

these guys ok. Now I will take one of those and I will write it as this ok. What am I

doing? Am saying that, I already have the entries up to here ok at a very general level

even here I could have said the same thing, remember that I had said that the output layer

you can always write as hL, right?

So, even at the output layer I could say this chain rule always holds, how many of you

agree with that? I want to go from the loss function to one of the lighter blue guys. So,

am saying that I can go through the intermediary dark blue guys, that is all I am saying. I

have just compressed this entire path into up to the dark blue guy. Remember I had said

earlier that I will be compressing this chains, is this clear to everyone? Ok. Now how

many  of  these  quantities  do  you know? The  first  one  is  what  we computed  on the

previous (Refer Time: 18:52) ok. The second one looks very difficult sorry.

So, h ij is nothing but sigmoid of a ij or any non-linearity of the a ij. So, I can just write

this derivative as I will just write it as sigma prime ok.



(Refer Slide Time: 19:10)

Or g prime is this fine ok. Now I have it with respect to 1 unit, what will I do? Go to the

gradient fit it all these values. Now simplify this, what is this? A vector right, what is

this? Another vector, there is a one to one correspondence between them. So, you have 2

vectors and you are doing a 1 to 1 multiplication, what is this?

Student: (Refer Time: 19:43).

How many of you say dot product? Dot product is always a, what is the output here?

Student: Vector.

Can it be a dot product; can it be a dot product? No please empathic no ok. So, what is it

going to be? An element wise multiplication and this is how you denote that ok. So, what

is  this  called? You had a mud product right.  So,  this  is every element  of one vector

multiplied by the corresponding element of the other vector ok. So now, again the entire

vector we can compute at 1 row right; I am not I am when I am teaching this I am telling

you how to compute one element and then go to the gradient, but when you are going to

implement this we are just going to compute the gradient at one go is that clear? Ok.


