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Tips for Adjusting Learning Rate and Momentum

So Tips for Adjusting the Learning Rate and the Momentum.

(Refer Slide Time: 00:17)

So, before moving on to these slightly advanced optimization algorithms, we will revisit

the problem of learning rate in gradient descent ok.



(Refer Slide Time: 00:24)

So,  one  could  have  argued  that  we  could  have  solved  this  problem  of  this  slow

movement on the gentle slope by increasing the learning rate. Remember that we have

this eta and we deliberately chose to be conservative, that we will take a small value for

the eta, but what if I just blow up the eta; I could just take a very large eta, what would

happen? It will overshoot right.

So, what will happen is, I will see what happens when I take eta equal to 10 ok. So, so I

will see what happens, when I take eta equal to 10.

(Refer Slide Time: 00:57)



So, this is step1, step 2, step 3. Its moving very fast on the regions where the slope is

gentle,  but  it  also moves very fast,  much faster  on the regions  where the slope was

already steep right

So, when the gradient was actually high, you ended up blowing it further by multiplying

it with the eta which is 10 right. So, it is again going to have this effect that you will

move much faster in the steeper regions and algorithm you will see these oscillations,

because you will overshoot your objective. Does that make sense right? So, it is not that

you can always choose a high eta and get away with it

So, what do you actually want, what is your wish list regulate theta. You want a adaptive

eta right that it somehow figures out that I am on a gentle slope, so I should move slowly,

I should move fast and I am now on a very fast loop, so I should move slow. So, this

having this 1 eta is not working for every point on the error surface right, for everywhere

on the error surface, is that clear ok so, ok. So, we will see such algorithms soon where

we try to adjust this learning rate ok.
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Now, here are some tips for the learning rate. So, how do you, if you are just going to

deal with this gradient descent or nag or momentum, how do you adjust these learning

rate. So, how do you fix a learning rate? So, a learning rate is typically something known

as  a  hyper  parameter.  So,  why  is  it  called  a  hyper  parameter?  So,  what  are  your

parameters?



Student: Which I learned.

Which I learned using the objective function; eta is not a part of the objective function,

you are not computing radians with the spectra, it is a hyper parameter. So, you will try

to tune this hyper parameter. So, what you will do is, in practice you could try these

different values on a log scale ok. Next what will you do? Run this all these for a few

epochs, note down the dash, just note down the loss function right.

So, done all of these with different learning rates, for say 5 epochs, you will get some

loss right. Now which one will you pick? The one which led to the maximum decrease in

the loss, I will keep that learning rate and now what you will do? You just stick to that I

started off with a dash scale.

Student: Log scale.

Log scale now what will you do ok. So, now, run it for a few epochs. Figure out which of

these learning rates on the log scale works well. Now do a finer search around the best

learning rate that you discovered right. So, say 0.1 was the best on the log scale. So, now,

look at 0.2, 0.3, 0.4, 0.5, look at values around it and see which one works better right.

So, this is how you will tune the hyper parameters; otherwise there is a very wide range

right, if you put tune from 0.0001 to 0.1, there are just too many values to consider right.

So, we will have to do this log scale and then a linear scale, will that make sense.

These are just heuristics, there is no guarantee that will always work or which of these

are  clear  winner  strategy, but  you have  to  try  this.  So,  tuning  a  learning  rate  is  an

important part, when you are working in deep learning right. So, at least when you are

working with gradient descent or nag a momentum based gradient descent.
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Now, here some tips for annealing the learning rate ok. So, there is something known as

step decay. So, what you can do is, halve the learning rate after every 5 epochs. Can you

tell me the intuition for this? What do you expect after 5 epochs? That you have moved

enough and now you are closer somewhere to the solution. So, if I closer to the solution,

if I closer to phoenix market city you want to move fast or slow?

Student: Slow.

What will you do?

Student: (Refer Time: 04:32).

Decrease the learning rate right. So, after every 5, now this is again what is so sacrosanct

about 5, it is just a magic memory, so this is again hyper parameter. So, you could fix

some number of epoch and after these I will just have the learning rate ok. Now this

second one is what my favourite is and I typically use this, what I do is? I compute the

loss after epoch t, I run epoch t plus 1, I compute the loss again. If the loss has increased

what will I do? I will just throw away all the updates that I have made in this epoch; I

will decrease the learning rate and again learn, again start this epoch. What do I mean by

throw away all the updates?

Student: (Refer Time: 05:17).



So, after epoch t I will save my model, I will save all the w values that I have computed

and I will let it run for one more epoch. After this epoch if my loss function actually

increases, I reload this model which I had saved, half the learning rate and then run this

epoch again. Does that make sense ok. So, I have run till epoch t, I have some values of

ws and bs, I will save this values, I will just save it as a numpy array ok

Now, I will with the same learning rate that I have been using so far I will run the epoch t

plus 1 and I get some new values of w comma p right. I will plug this into the loss

function; I will plug this into the loss function I will get two loss values. If this loss value

is greater than what I was at the previous time step; that means, things did not work out

well in this particular epoch.

So, I will throw away all these updates. I will just reload the model which I had saved, I

will just start from where I was at epoch t, I will decrease the learning rate I will make it

half and run this epoch again right and hopefully now I should do better, because there is

something. I am just making a hypothesis that the reason I did not get to a better loss

function, was because my learning rate was not adapting to it right.

So, I will just half the learning rate, because this solution was good, this was a low loss

function. I just want to be something around it; I do not want to make any drastic steps.

So, I will just half the learning rate from there. So, then you not see this drastic change

that,  your  loss  function  should  not  improve.  So,  first  of  all  local  minima  is  known

problem in deep neural networks right.

So, what happens is that, in deep neural networks you do not have something which is

like a neat convex function as your loss function right, it is a non convex function which

means  there  is  no one unique  minima,  there could be several  minima  and there  are

several analysis which show that a lot of these minima are equivalent ok. So, in practice

these are the things that you do. Either once you reach a minima you just stay there. The

second  thing  that  you  could  do  is,  you  have  trained  your  algorithm  trained  your

parameters for say 100 epochs and you have stopped now

Now, again go back and start with a different initialization,  you started with some w

naught b naught and you have reached to some solution keep this solution. Now start

with a different initialization; that means, if you look at your wb plane, you have started



from some other point; that means, you started from some other error location right and

run this algorithm again, and see if you reach a different minima.

So, the only thing you, the way you counter this is, you just try different stochastic things

right, should try to start with 10 different initializations every time reach a minima and

then at the end select the lowest possible of these. Did this make sense to most of you,

how many of you got this oh cool ok? I thought I was just rambling, but yeah fine. Does

that make sense, to you at least ok, does it fine

Yes a local minima is a severe problem in lot of deep learning optimization and typically

people get away by that, by just picking up one of these minimum fine. Now the other

thing  is  you could  use  exponential  decay, where  with  each time  step  you just  keep

decreasing your learning rate right. And if this case 2; that means, at every time step you

are halving the learning rate, so you just get with something like this ok.

But the reason I do not like this is that you have one hyper parameter which is eta which

you are trying to tune and now to tackle that problem you have introduced one more

parameter which is k, hyper parameter which is k right. So, it becomes harder to tune that

now, and there is a similar thing which is 1 by t d k, where you try to use this formula to

decay or learning rate ok. So, both of these, I typically do not use in practice I use the

second one, I prefer the second one ok.
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Now, tips for the momentum can you make sense of this, you just stare at it it looking

just come back ok. Let us see what happens at t equal to 0, this becomes 0.

Student: Log 1.

Log 1 is 0, this is 2 raise to minus 1 minus 0 which is just 2 raise to minus 1 which is 0.5.

So, what is your mu t at t equal to 0.5 ok. Does that make sense? Is it fine with everyone

or is it confusing; no mu max is typically this, let us assume mu max is this fine.

Now, what happens at time step 250? this is 250 by 250, so this becomes 1, 1 plus 1 is 2,

the best thing that you learn in this course log of 2 is 1, so this become 2 raise to

Student: 2 raise to minus 2.

Minus 2 which is 0.25. So, what is this?

Student: 0.75.

0.75 ok, let us do one more I had t equal to 750 1 minus 1 by 8, so that is what is going to

be  right  ok.  So,  then  what  is  happening  as  my  time  steps  are  increasing,  what  is

happening to, what is happening? I am having more and more faith in the history or the

current gradient. What am I increasing? Actually I have made a mistake, actually this is

mu is gamma there is not we did not use mu anyway what you guys just went along. So,

this is gamma actually right that was a momentum term that we had. So, as a number of

time steps is increasing, my gamma is increasing; that means, I am having more and

more faith in my.

Student: (Refer Time: 11:49).

No history. Learning rate is eta, momentum is gamma. So, its gamma into update t minus

1 and eta into gradient at the current time step right and here gamma is actually equal to

mu. Is there any more confusion that I can add? ok. So, when I say gamma I mean mu

and so that is how it is. So, as I am increasing the number of time steps I have more and

more faith in the history; that means, I do not want to now get distracted by this one

update which I am making right, I want to go by the history, and I am not increasing this

gamma or mu indefinitely, I am capping it by a max right. Max I will have this much



faith which is 0.999 in the history. Does that make sense? This is again just a heuristic;

do not worry too much about it. So, that is how it is. 


