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So, in this video we will try to look at an explanation for why we need Bias Correction in

Adam ok. Or in other words I want to explain why do I do this particular step why did I

take m t and v t as it is, but why did I do this particular step which I called as the bias

correction step ok.
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So note that in the case of Adam if you look at this equation for m t we are actually

taking a  running average  of  the  gradients  and storing  it  as  m t  right.  So this  is  the

gradient and we are taking a running average or exponential running average of these

gradients exponentially decaying running average right.

Ah So the reason we are doing that is that we do not want to rely on a single estimate, so

we do not want to rely only on gradient of w t we want to look at the overall behaviour

of the gradients over multiple time steps and then take a decision. So that means, in one

particular gradient at time t is actually pushing us in some direction we do not want to be

very hasty and start moving there we want to accumulate the history and appropriately

weigh everything in the history, that is the idea behind taking this running average of

radiance ok.

And the other way of looking at is that we are interested in the expected value of the

gradients and not the point estimate at time w t right. At time t rather so gradient of wt

which is this quantity which is the point estimate at time t, we are not interested in that

were interested  in  the expected  value and our  behaviour  should  be according to  the

expected value that is what we desire.

So however, instead of computing the expected value of this quantity which should have

been ideal, we are computing empty as the exponentially moving average. So in the ideal

case we would want that these two quantities are the same that the expected value of



empty the way I am computing it and the expected value of the gradient of w t should be

the same. If that is the same then I am fine because then; that means, I am just taking the

expected value or the, of the gradient instead of relying on the point estimate ok. So, let

us see if that is indeed the case.
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So, for convenience we are going to just denote this gradient w t as g t because it is

cumbersome to write  this  grad symbol and we will  just  not  make it  so readable the

derivation that we are going to do. So I am just going to replace that as g t so what I have

written is g t here instead of grad w t right. So from now on I will just use g t for grad w t

is that fine ok, so we have this expression for m t.

So, now let us just try to expand it and see what happens right so m 0 it is going to be 0

because that is my starting points I have no history nothings, so I will just going to keep

it as 0, m 1 is my first time step at which it is going to be beta into m 0 so I am just

substituted t minus 1 and t here. And in the original expression I have just substituted

appropriate quantities for m of t minus 1 and g of t, so m of t minus 1 is 0 m 0 and g of t

is g 1 and of course, b 0 m 0 itself was 0, so what will be left it is 1 minus beta g 1.

Now, let us look at what happens is m 2, m 2 is going to be beta m 1 plus 1 minus beta g

2, but I already have an expression for m 1, so I am just going to substitute that here and

this is what I get ok. Now let us look at m 3, m 3 is again going to be beta times m 2 plus



1 minus beta times g 3 and I have an expression for m 2 so I am going to substitute that

here and see if that leads to something interesting right.

So, I have just substituted the value of m 2 here right and I already had the m 3 part here

the, this term here as it is ok. And now let us see so this already starts looking something

interesting you see some pattern here, in particular we could take these 1 minus beta

terms outside they can be taken common and then you will be left with beta square g 1

plus beta square g 1 plus beta g 2 plus g 3. So let us try to write this more compactly

right, so I have taken one minus beta common and then I have written the remaining

terms as this particular summation and you can verify right.

So, when I is equal to 1 this is going to be beta 3 minus 1 which is beta square into g 1.

When I is equal to 2 this is going to be beta 3 minus 2 which is going to be beta into g 2

and when I is going to be 3 this is going to be beta raise to 3 minus 3 which is beta raise

to 0 which is just 1 into g 3 right. So we get back the same expression that we had here

of course, there is a 1 minus beta outside, so this is a more compact way of writing it and

this was for the 3th entry right this was for m 3, the third entry.

Now, what if we want to write it for the tth entry in general, what if we want to write the

expression for m t right.
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So, in general m t we can write it as 1 minus beta as i equal to 1 to t b beta t beta ratio t

minus i into g i right. So this 3 is here I have just replaced them by t s right you can just

verify that this is from you can just generalize from the third entry to the tth entry fine.
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So now, let us see we have the following expression we have simplified the expression

for m t and written it more compactly, but what we were eventually interested in the

expected value of m t right, we wanted to show that certain things holds for the expected

value of m t.
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So, you just take expectation on both sides so this is what we will get ok. Now 1 minus

beta is of course, a constant so I can move it outside the expectation, so then I get an

expectation of a sum.

Now, the expectation of a sum is the same as the sum of expectations, so I can write it as

a sum of expectations ok. Now again beta is a constant so I can take it outside the expect

expectation, so what I will be left with is beta raise to t minus i outside and expectation

of g i right. So this is actually expectation of g 1 when i equal to 1, then expectation of g

2, expectation of g 3 and so on ok.

Now, we will make an assumption that all these g is; that means, the gradient at time step

1, the gradient at time step 2, the gradient as time step 3 and so on they all come from the

same distribution ok. We are going to make that assumption so let us try to understand

the implication of that right. So let us say this was a distribution from which g 1 came

right suppose I am dealing with a scalar quantity and maybe this was the distribution

from which g 1 came. Now g 2 could have come from a different distribution, g 3 could

have come from a different distribution and if that was the case then expectation of g 1

would be different from the expectation of g 2 and so on.

So, what we have assumed to it will make things simple for us is that g 1, g 2, g 3 any g i

comes from the same distribution and hence you can say that the expectation of all these

g is is going to be just the expectation of g, that is this one single distribution from these

which these entries come this of course, a very strong assumption, but we are going to

live with this assumption ok.
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So then this expectation of g i just becomes expectation of g, so I have gotten rid of the

index i; that means, I can move it outside the summation right so this is what I will get

now. These two have come out of the summation and inside I have this quantity, now let

me just expand this quantity this is nothing but beta raise to t minus 1 plus beta raise to t

minus 2 plus so on at last you will reach t minus t which is just going to be beta raise to

0.

So, this is nothing but a sum of a g p with common ratio beta and I can replace that sum

by this formula, you know this is the formula for the sum of a g p with common ratio

beta. So I have just replaced that and now what happens is this 1 minus beta and 1 minus

beta cancel out, so I get this particular expression that the expected value of m t is equal

to the expected value of g into 1 minus beta t.

So,  I  will  just  take  1  minus  beta  t  on  the  other  side  and  I  can  move  it  inside  the

expectation because it is a constant it does not matter. So I will get as oh actually yeah I

can just move it inside so I will get it as expectation of m t over 1 minus beta is equal to

expectation of g t right and this quantity the one which I have circled is nothing but m

hat t right this was exactly the bias correction that I was applying. If I go back to the

previous slide or the slide before that, so this was exactly the bias correction that I was

applying right.



So, what I have inside is this, so what I have shown is that if I apply the bias correction

then the expected value of the bias corrected m t is equal to the expected value of the

gradient and that is actually what I wanted, I wanted that whatever m t. I am computing

if I look at its expected value it should be the same as the expected value of my gradients

and that is what I have arrived it right.

Hence  this  bias  correction  makes  sense  and hence  we apply  this  bias  correction  for

Adam. So this we have shown for m t, we had a similar expression for v t right, so for m

t we had this  bias  correction  as m hat  t  and similarly  for v  t  also we had this  bias

correction as v hat t so you can derive the same kind of derivation for v t also and show

that that bias correction makes sense right. So this is an explanation for why you do bias

correction in the case of Adam ok, so we will end this lecture here ok.

Thank you.


