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So, this lecture actually is a bit of a digression, and it is supposed to cover some of the

basics that we need for various sections of the course. So, it is very important that you

understand some concepts for linear algebra specifically eigenvalues, eigenvectors and in

particular. Today we will do principal component analysis, and the reason that I do it is

there is an very neat relation of PCA and to autoencoders. An autoencoder is something

that well cover in the course, it is a part of any deep neural network course.

And singular  value  decomposition  is  something  that  we  using  when  we  learn  word

vectors. The word vector is again something very important, I can just I can do the non

SVD version of it where I just talk about what word to wick is, but that will not give you

the same probably not the same interpretation as if you start from SVD and then reach

word vectors, right. So, that is why I am covering these basics.

So, how many of you know eigenvalues and eigenvectors? Very embarrassing question

how many of you absolutely hate eigenvalues and eigenvectors. So, let us see if we can

change that today ok, I mean on the positive side right. 



(Refer Slide Time: 01:24)

So, what happens when a matrix hits a vector? So, most of you a lot of people that I talk

to right actually think that eigenvectors are the villains of linear algebra, it is very hard to

understand them and so on. But today I am going to make a case for they are not the

villains they are actually the superheroes of linear algebra. So, that is what the lecture is

about ok. So, what happens when a matrix hits a vector?

Student: Transforms it.

Transforms it right; so, actually what happens is that it strays from it is part. So, this is

the original (Refer Time: 01:58) this is the original vector x and now once I multiply it

by A; that means, if I do the transformation A X then I get a new vector. And two things

happen right, one is the direction changes which is obvious, and in many cases the scale

also changes; that means, the vector might get elongated it is magnitude would increase

or it would decrease right. 

So, if you really think about it actually right. So, matrices are the real villains of linear

algebra right, and we just look at this vector was minding it is own business going along

it is own direction a metric comes and hits it and completely changes it is world right, I

mean; it just throws it off path increases a dimension or slows it down or whatever it. So,

that is they are the bad guys now for every villain what do you have a super hero right.

So, what is a super hero corresponding to orbit? What does a super hero do? Know that is



a very linear algebra. I am talking about comic books that this is very linear algebraic

answer he stands up to the villain right ok.

(Refer Slide Time: 02:54)

And that is exactly what Eigen vectors do it right, they refused to change their part they

tell the matrix ok. You can hit me as many times as you want probably you can increase

my you could probably slow me down a bit or push me ahead or something, but I am not

going to stray off from your path right. So, that is what eigenvalue eigenvectors do.

So here is a matrix, which is a villain and here is an eigenvector which is our hero and

now when this matrix hits this eigenvector it refuses to stray from it is part right. It says I

will move forward I will move back whatever, but I will not change my direction ok. I

will just stay honest to what I am and these vectors are called the eigenvectors. I am

more formally you can write it as Ax is equal to lambda x right so; that means, the

direction remains the same only the scale changes it will either get slowed down or it

will get boosted up right. So, the magnitude would change, but the direction remains the

same ok.



(Refer Slide Time: 03:50)

Now, what is so special about eigenvectors? Like why are why is it that, they are always

in the lime light? I know the any course that you do invariably touch eigenvectors or

eigenvalues at some point in that course right, where the beat machine learning image

processing whatever you do you always speech everything that you do, you will always

have  eigenvectors  and  eigenvalues,  why  is  I?  So,  well  it  is  turns  out  that  several

properties of matrices can actually be explained away by looking at their eigenvalues

right. So, if I look at a matrix I would probably not be able to comment much on it, but if

you tell me something about the eigenvalues.

I can see a lot of things about of it and there is an entire field on this way this entire

spectral  graph  theory  which  looks  at  properties  of  Laplacian  matrices  and  come  in

something on the properties of the graph and so on right. And that is just an example

which we do not care about, but what we care about in this course there are a few things

that we care about with respect to eigenvalues and eigenvector. And that is what I am

going to focus on right. So, that is what this lecture is going to be out. And I will take 2

specific cases which are very important for us to understand certain concepts later on.

So, I will start with the first one.



(Refer Slide Time: 04:50)

And I will start with a very simple example to motivate this problem. And eventually

will  lead to a result  which will  help us understand a very important  concept in deep

neural network training which is exploding and vanishing, vanishing reboots. We will not

touch that concept today, but we will use these ideas when we are looking at that later on.

So, let us take this  example of 2 restaurants.  So, there is a Chinese restaurant and a

Mexican restaurant. And on day one k 1 students eat in the Chinese restaurant and k 2

students eat in the Mexican restaurant ok. So, this is what my situation is on day 0, k 1

for Chinese and k 2 for Mexican ok. Now what happens as is obvious people get bored

or they have different want to try out different things. So, on day two or other each

subsequent day what happens is that, a fraction p of the students who ate Chinese today

will offer max Mexican, on day on the next day and a fraction q of the students who ate

ma Mexican today are going to offer Chinese.

So, you get this situation right. So, I started with k 1 k 2. So, what I am saying is on day

one that is the next day only a fraction p of the k 1 students will remain for Chinese and a

fraction 1 minus q would be transferred from Mexican to Chinese ok. And similarly only

a fraction q of the students would again stick to the Mexican food and a fraction 1 minus

p into k 1 would shift from Chinese to Mexican is this setup clear ok. Can you write this

as a matrix operation it would be a matrix multiplied by a vector right can you tell me the

vector.



Student: (Refer Time: 06:29).

k 1 k 2 k 1 k 2 and the matrix is in all this ok, this is what it is. And I am saying that this

happens on each subsequent day, it is every day now this keeps happening. So, on day 1 I

started with say 180 and now day 2 it change to something again day 3 it will change

something by the same fraction. 

Now, let me call this as matrix M and this is of course, v 0 right by definition as we

decided now what would happen on day 2 what would v 2 be M applied to v 1 right and

which would be M square applied to v 0. I am just substituting the value of v 1 which is

M into v 0 in general on the nth day what would happen M raised to n into v 0 ok. So,

you see that the number of customers in the 2 restaurants is given by this series you had

v 0 then M into v 0 then M square v 0 and so on up to M raised to n vn ok. You see how

the number of customer is changing.

Now, and this is how I represent it as a state transition diagram right. So, I had certain

numbers on day 1 and it changed with the trans with the probability p they will stay back

with a probability 1 minus p they will move to the next or the different restaurant and so

on right.

(Refer Slide Time: 07:32)

And now this though a very toyish example can you relate it to many things in real life or

many things that you will take in decision making rate that you are. So, even if you are



playing a game for example, and even if you are playing Atari games or something, you

are in a certain state based on some action that will take will move to a different state and

so on right. So, these things happen in various real world applications right there is a

certain state for example, even in stock market prediction, you are at a certain value of

fish stock it might change to a different value right and these values you could just say

them as high low or neutral that I am not going into the actual numbers.

Today the stock value is high it does it possibility that it will transition to something low

and so on right. So, these kind of straight transition diagrams occur in various real world

examples.  Now this  is  a  problem for  the two restaurant  owners  right,  why is  this  a

problem for the two restaurant owners? They do not know how much food to make, but

every day the number of customers is changing right, but is the number of customers

actually changing. Will the system eventually reach a steady state? Will it is it obvious

that it will reach a steady state or maybe it will not even reaches steady, but the way I

describe it I do not see why it should reach a steady state right you have some people

here they go there come back go there and so on.

The only thing which I have assumed is that the transition matrix which was the matrix

M is constant across all the time steps right. So, every day it is at the same priorities by

which things are changed right. So, what is your guess if I were to ask you to take a

guess ok. Let us see how many of you think and it is there is no correct answer here at

this point. So, just tell me how many of you think it will reach a steady state? How many

of you think it will keep changing and why is the sum never equal to 1 ok. So, fine so it

turns out that they will right and let us see how. 



(Refer Slide Time: 09:40)

So, we will define some things and some of these are just definitions some of them have

accompanying proofs, which I am not going to do here you can the proofs have been

linked from the slides. So, you can take a look at them if you are interested right.

So, suppose there is a matrix A n cross n matrix which has eigenvalues are lambda one

lambda 2 up to lambda n. Now what this definition is saying is that, assume that there is

one eigenvalue which is greater there is no assumption actually the eigenvalue which is

greater than all the other eigenvalues is called the dominant eigenvalue. And when I am

looking at a dominant eigenvalue I am only concerned with the magnitude not the sign

ok. So, it could be that an eigenvalue is minus 10 and all the other eigenvalues are 1 2 3

4 5. So, the dominant eigenvalue would be minus 10 right and I will just take it as step is

that clear the definition of a dominant eigenvalue ok.

Now, how many of you know what is the stochastic matrix? So, matrix M is called a

stochastic  matrix,  if  all  the entries  are  positive and the sum of the elements  in each

column is equal to 1. So now, this definition is again slightly misstated. So, there is a row

stochastic matrix the column stochastic matrix and also doubly stochastic matrix right.

So, what I am talking about here is a column stochastic matrix like our matrix have you

seen such a stochastic matrix any time in your life in the last 5 minutes the M matrix

right. So, the M matrix is a stochastic matrix because the sum of the columns was 1 right,



you had p 1 minus p q 1 minus q or was it some of the rows was 1 rows was 1 is it the

columns fine.

So, this is a stochastic matrix just a definition.  Now I combine these two definitions

which is, dominant eigenvalue and stochastic matrix and give you a theorem right. So,

the largest dominant or the dominant eigenvalue of a stochastic matrix is equal to 1 ok.

So, to prove this, what do I have to prove? So, I need to prove two things one that 1 is an

eigenvalue of this matrix of any stochastic matrix and second all the other eigenvalues

are less than 1. So, that is exactly what this proof does here you can take a look at it and

just to give you a heads up. So, last year I use to do this that please see the proof go back

and look at the proof people never look at the proofs.

So, I used to ask them in the quiz where I should be sure that people not going to answer

right. So, please when I say go back and look at the proof do that ok. So, and lastly if A

is an n cross n square matrix and you have this series A v 0 A square v 0 up to an vn, then

this series will converge to the dominant eigenvector of A. What does a statement mean?

Let us not get into the proof right what does it actually mean ok. So, let us start with very

basic stuff it what is the series actually? What is each element in this series it is a vector,

it is a vector everyone gets that every element in the series is a vector?

Now what do I mean that a series of vectors converges to the dominant Eigen vector,

what is convergence mean? If I keep finding the next element next element next element

of this series and I keep doing this as long as I can. I will reach a value n right where n is

the nth element in the series which will just be a multiple of the dominant Eigen vector is

that clear? You not seem to be clear everyone gets that ok.

So, what do you mean by if you take a series of numbers and if I say that the series

converges to 0, what does that mean? If you keep finding the next element in the series,

you will hit a point n where you find the nth element of the series and it will be 0 (Refer

Time: 13:20) that ok. So, we will just I will leave it at that for now. Now so stochastic

matrix dominant eigenvalues the connection between 2 and the convergence theorem for

a series of vectors which is A v 0 A square v 0 and so on ok.



(Refer Slide Time: 30:36)

Now, let ed be the dominant Eigen vector of M where M is a dash matrix in our case it is

a stochastic matrix. So, what with the corresponding dominant eigenvalue be.

Student: 1.

1 so given the previous definitions and theorems, what can you say about the sequence?

It converges to a dash of ed.

Student: (Refer Time: 13:59).

A multiple of ed right. So, there exists an n such that the a length nth element of the

series which is given by this  is going to be equal to some multiple  of the dominant

eigenvector no, no; k is some multiple no this is not related to eigenvalues yet just wait

for the next statement, then you will see the difference that this is not the do eigenvalue

yet ok.

Now, my question is what happens from here onwards, what would be the next element

in the series. How many of you say some k dash into ed? What is the other pause I do not

have the other option what is the other option.

Student: k into ed.

k into ed how many of you say k into ed? A large number of ok so, you see that now just

notice the eigenvalue will come up right. So, at step n plus 1 you would have M into vn



which is M into k into ed and this quantity is actually 1. So, the theorem says it will

converge to some multiple of k and now if it is a stochastic matrix, what will happen

after that time step? It will just remain the same vector.

So, what would happen to the number of customers in the two restaurants it will remain

the same right you get that fine. Now, this was all for, what kind of matrices? Stochastic

matrices square stochastic matrices ok.

(Refer Slide Time: 15:15)

But we generally care about any square matrix. In fact, we should care about any matrix

not discriminate, but any square matrix will do for now. So, for a square matrix let p be

the time step at which this series approaches a multiple of the dominant eigenvector.

The  theorem was  for  any square  matrix,  remember  it  was  not  for  stochastic  square

matrices.  We just  use  this  value  that  for  a  stochastic  square  matrix  the  dominant

eigenvalue  is  1,  which it  need which leads  to  that  neat  result  that  the num then the

number of customers just becomes constant right ok. But for any square matrix, I could

write it as this that there exist some step p at which the element of the peath element of

the series would just be a multiple of the dominant eigenvector ok.

Now, what would happen at step p plus 1? Is this fine ok, what about step p plus 2, and in

general at p plus k or p plus n everyone gets this ok. So now, can you tell me what does



this knowing this dominant Eigen value tell us about this series, when will it stabilize

actually?

Student: (Refer Time: 16:25).

When lambda is equal to 1 that is the case we already saw if the dominant Eigen value is

greater than 1, what would happen?

Student: (Refer Time: 16:33).

Series will explode the series will explode and if it is less than one what would happen

the series will vanish ok. So, this is an important result that we will use when we are

discussing exploding and managing gradients.

So, we will see that in the case of something one as a recurrent neural networks, you end

up with something of this sort and then I will make some comments on that right. So,

that is why we will be using this will come probably 6 7 or maybe more lectures down

the line ok, but we will be using it at this point. So, the main result from here is that if the

dominant eigenvalue, this should be lambda d is greater than 1. Then it will explode less

than 1 it will vanish and equal to 1 it will stabilize ok, is that fine ok. So, that is one

result one important property of eigenvalues and eigenvectors that well be needing at a

later point in the course. 


