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Principal Component Analysis and it is Interpretations

So, in this module we will talk about Principle Component Analysis and it is different

Interpretations. In this model we will look at one interpretation and then in the rest of the

module some other interpretations.

(Refer Slide Time: 00:25)

So, the story I add is going to be this we will talk about PCA and it is Interpretations, ok.



(Refer Slide Time: 00:30)

So  now  let  us  try  to  motivate  PCA first  consider  the  following  data  ok.  In  what

dimension is this data?

Student: 2 dimension.

2 dimensions it is R 2 ok. And each point here is represented as it is x coordinate and

using it is x coordinate and it is y coordinate. Now it means that were using x and y as

the basis right. That is clear that is the standard way that you would do any data point

you will just represent using that basis.

Now, what if we choose a different basis? Let me give you 1 basis and then let me ask

you some questions on this.



(Refer Slide Time: 01:05)

Suppose we chose this basis. So, in the previous modules we made a case for the x and y

coordinate axis, there is nothing sacrosanct about it you could use any basis; The only

condition on the basis that the vector should be linearly independent and in fact, if they

are orthogonal it is even better right.

So now I have given you a different basis now what do you make any observation here?

So, they have all the points here have a very small component along the u 2 axis right. So

now, this so far this point right, if I consider at this point then this is the component along

the u 1 axis. So, that is it is u 1 coordinate as akin to the x coordinate and this is it is u 2

coordinate akin to the y coordinate ok, is a are the arrows clear here, ok.

So; that means, there u 2 coordinate is very small, and it is also very small for all the data

points right. So, it is almost as if there is some noise there it is all within some epsilon.

Now so it seems that the data which were actually represented in R 2 can actually be

represented in R 1 by getting rid of this noisy dimension right. So, if you had chosen a

different  basis,  you  realize  that  with  just  one  dimension  you  could  have  captured

everything that was there in the data, and the other dimension was just adding noise it

was redundant there is hardly any information there, ok.



(Refer Slide Time: 02:24)

So now can you state this more formally because this is this intuition, but can you stated

more formally in terms of things that you have learned and say probability for it for

example, what is wrong with the direction u 2? The spread of the data points along the u

2 direction is very small, what is the spread mean the variance right. So, we do not care

about u 2 because the variance in the data along this direction is very, very small ok. And

in particular  right if I were to build a classifier, then would u 2 have any predictive

power? Because along this dimension the points are indistinguishable ok; so, think of it

that you are trying to find out whether you have. So, you have say 100 candidates and

you want to decide whether they would be good basketball players or not right.

And quite naturally all the people that have shown up are say 6 foot 2 and 6 foot 3 inch

and so on; and there in a very small height difference between them and all of them are

6.2 is the average and very close the spread is not much. So, this feature is not going to

help you decide whether this person is going to be a good basketball player or not. You

will have to rely on other features where the variance is more for example, how many

teams has he participated  in the past,  how many matches  as he won as a team as a

member of some team and so on it.

So,  those  who expect  some spread  to  be  there  all  these  100 candidates  might  have

different things right? But if the height is the same for all of them it is not going to be a



good predictor. And that is exactly what is happening along the u 2 direction. The points

are almost indistinguishable there that is why; it does not matter.

(Refer Slide Time: 03:55)

So, in general given any data, now this was a simple case where the data was R 2 I am

talking about the general case where the data is Rn right, and you will find this situation

in higher dimensions also. So, you would not want to use that entire n dimensional data

where you know that there are some columns, along with the variance is very small. So,

you want  to  represent  the  data  with  fewer  dimensions,  such that;  the  data  has  high

variance along those dimensions, ok.

Now, let  me just  clear  a  confusion here right.  So,  I  am not  saying that  take your  n

dimensional data ok. Find the variance across each of these dimensions and then throw

away the columns which have the lowest dimension, in this particular example if you had

done  this,  what  would  happen?  Could  you  have  done  that  think  of  the  original

dimension’s x and y. Along, these two dimensions there is enough various in the data,

right? The x coordinates vary from here to here. And the y coordinates also vary from

this  point  right  up  to  that  point  right?  So,  there  is  enough  spread  in  the  x  and  y

coordinates.

So, in your original data I am not saying that pick look at each column, and see if there is

no variance along that  column then throw it  away that  would not work because you

might  end  up  with  the  situation  that  there  is  enough  variance  across  each  of  these



dimensions. It is just that when you look at the data from a different angle; that means,

you projected onto a different basis this becomes clear right?

So, you see the difference I that is not the same these two things are different operations.

So, what I am looking at is projecting the data to a different basis, that is exactly what I

did with u 1 and u 2.  And then some things became clear  about the data.  Now this

projection along a different basis, I would be interested in doing that only if; I can get rid

of the number of dimensions right? If now I had already had one basis where I had n

dimensions. Now if the new basis is also going to be that all these new n dimensions that

I have come up with are important then you are not gaining much, I do still have this

high dimensional data, but you would like to project it in a way that you get rid of the

lower variance dimensions.

So,  you might  project  it  onto  n dimensions,  but  you want  to  rank these  dimensions

according to variance and then throw away some of these dimensions, is that clear; is the

objective clear? Ok fine. Is that all that we care about; n dimensions’ project to a new

basis and throw away the key dimensions which have less variance, is that all? What else

would you want? People have done the MLPR course, no I would not. So, I am not going

to classification or anything I just want a better representation of the data at this point. I

am not really thinking about what I want to do with the data, maybe you are talking in

terms  of  classification.  And  we  have  already  seen  even  if  the  data  is  not  linearly

separable we have solutions for dealing with right. So, that is not a critical point ok. So,

there is something else that very interested in and let us look at that ok.



(Refer Slide Time: 06:49)

Now, consider this data I have 3 dimensional data ok. Do you find something odd about

this data?

Student: (Refer Time: 06:56).

y and z are.

Student: (Refer Time: 07:00).

Are highly dash.

Student: Correlated.

Correlated  right  do you want  these dimensions? Can you think of any practice  such

dimensions occurring? Height in centimeter and height in inches, someone would have

just  given you data  right?  Or  if  you if  you take  the  credit  card  a  credit  card  fraud

detection case right? Someone would give you the salary and it would also give you the

income tax now these 2 are highly correlated right?

So, then you do not really care if you have one you could probably almost with certainty

predict the other right? Modulus some rules right because you get some tax exemptions

and all that, but still. So, you can have this in practice, but even in our oil mining case

your salinity pressure density those things could be related right? So, z is not adding any

new information beyond what y is happening. So, the 2 columns are highly correlated.



So, actually yeah this is the formula for correlation, all of you know this anyone who

does not know this formula good. So, not nothing is a stupid question right. So, you can

always ask.

So, y hat is the mean of this column a, sorry y bar; z bar is the mean of this column and

this is how you compute correlation this is just the formula ok. So, from every entry you

subtract the mean ok. So, this is known as centering the data. So, if you do this what

would the mean of the new data be?

Student: 0.

0 right? So, that is why it is called centering the data ok. So, I will have 0 mean 0 mean

and you. So, what does this;  what is the intuition behind this  formula? Does anyone

know? Can anyone tell me? So, this is a summation ok. So, this quantity is going to be

high if the summation is high. It is a summation of some n terms now these terms could

be positive or negative; If all the terms are positive what would we happen to the sum?

Student: (Refer Time: 08:50).

It would be high if there are some terms which are negative it would be low. Now when

would all the terms be positive whenever y is above the mean, z is also above the mean

right  therefore,  this  quantity  is  positive  this  quantity  is  positive.  Whenever  both  are

below the mean again the product would be positive. When one is above the mean the

other is below the mean, then there is something wrong happening right and in that case

you will have a negative term right? So, you get the intuition fine

So, for more details of course, you can refer your other textbooks and so on, but this is

just the intuition an important step here is to 0 mean the data right. We are computing the

subtracting the mean of the data.  Another way of saying this is that the column z is

actually linearly dependent on y ok. It is almost linearly dependent I of course, have

some noise 2.1, 0.76 and so on, but it is largely linearly dependent, I can get I can write z

as some c times x fine.



(Refer Slide Time: 09:48)

So  now  can  you  tell  me  the  refined  goals  that  we  have?  We  are  interesting  the

representing data using fewer dimensions such that;  remember that when I say fewer

dimensions I mean a new set of dimensions right? It is not throwing away dimensions

from  the  current  data.  We are  looking  for  a  new  set  of  dimensions.  What  are  the

conditions that we want from these new set of dimensions?

Student: (Refer Time: 10:12).

One there should be high variance along these dimensions the new dimensions, and?

Student: (Refer Time: 10:15).

The dependence are linearly independent or uncorrelated fine.

And even better of course, if they are orthogonal, why?

Student: (Refer Time: 10:26).

Because we are looking for a new dash.

Student: Basis.

Basis and the most convenient basis is.

Student: Orthogonal basis.



Orthogonal basis, ok, fine.

(Refer Slide Time: 10:33)

So, now let us assume someone has given us this new basis ok. And let us call this p 1 p

2 pm. So, instead of this x y z and so on, someone has given us this new basis eventually

we will of course, figure out how to find the basis, but let us assume that someone has

given this  new basis  right.  And they are both linearly  independent  and actually  it  is

redundant actually. So, yeah this  example of a redundant feature such an, orthogonal

vectors is sufficient, they are linearly independent.

Let p be an n cross n matrix such that p 1 p 2 p n are the columns of p right; Same thing

as we had put the Eigen vectors in a column and probably I have unknowingly given out

the solution, but ok. And let x 1 to xm be the m data points given to us ok. So, we are

given this data as usual we have this X matrix each one of them belongs to Rn. And we

have m such data points right that is the standard thing that we are operating, and you

always write this as a matrix and we have already done the data is 0 mean and unit

variance.

Actually unit variance is not required, but the data is 0 mean fine that we will sorry I am

going to deal with covariance, as a unit variance is not required. So, the data is 0 mean is

what I am going to assume, but what if the data is nonzero mean I can always make it 0,

right.



So, just to remember this is an important trick that you will always have to use whenever

you are doing any large scale machine learning. So, whenever you are participating in

gaggle competitions almost the first thing that you do is standardize the data; that means,

make it 0 mean and unit variance. So, why is that important?

Student: Scaling.

Right scaling issues would not be there right. So, if I have something in centimeters and

some  other  unit  in  kilometers  right?  Now  remember  that  always  you  are  doing

somewhere this linear operation w transpose X. You might add a non-linearity on top of

that, but now if your xi dimensions some of them are in the range of 0 to 10000 some of

them are in the range 0 to 10 right.

Then there is some abnormality here right, some dimensions are when in terms of their

magnitude and some dimensions are losing out right? That is why you always make it

unit variance and you also make it 0 mean you center the data ok. So, we will assume

this and if we all understand if the data is already not 0 mean and unit variance we can

always make it 0 mean and unit variance , just scale it and make it center, ok.

(Refer Slide Time: 12:50)

Now, we want to represent each xi right. So, xi is one of these data points that we had;

that  means,  one of the rows of our matrix,  ok. And you want to write  it  as a linear

combination of this new basis.



So, if you have any basis any vector you can write it as a linear combination of that basis

, is it fine? So far it is ok, ok. Now for an orthogonal basis we know that we can compute

these alphas just by taking a dot product of the vector with the dimension ok, and just

repeating some of the things right fine.

(Refer Slide Time: 13:25)

So now let us see what this means; for one of the dimensions this is my data point xi

which I want to transform , for one of the dimensions I just had to take the dot product

with that dimension and this will give me how many values; One value; that means, the

coordinate along p 1. I want to do it for all the n of them I can write it as this vector

matrix multiplication right, what is the dimension of this?

N cross 1, how many if you get that? Ok so this oh not many why?

Student: (Refer Time: 13:55)

1 cross n fine that is fine yeah how many of you get this; Ok fine yeah. So, this will give

me all the n alphas is that clear for this data point, ok.

So, it will give me alpha i 1 to alpha i is it ok.



(Refer Slide Time: 14:11)

Now, I want to do this for the entire data right. So, I have done it for x 1 I also want it to

be done for x 2 and all the way up to x m, for each of these I would have such an

operation where I have a vector multiplied by this matrix. If I just stack all these vectors

I get back my matrix x. And the whole operation I can write as x into p is that clear to

everyone ok, what is the dimension of x into p?

Student: m cross n.

m cross

Student: n.

n right so, for all the m data points I have alpha 1to alpha n is that clear anyone who does

not understand this? Ok fine.

So, X hat is the matrix  of the transformed points is that  clear? I have now the new

coordinates instead of the original coordinates according to the coordinate axis. I have

the new coordinates in this matrix, ok.



(Refer Slide Time: 15:09)

Now I will just go through some very simple theorems or rather results. And I will not

prove them you can prove them on your own, or other proof is there in the slides we can

look at it later on right. So, if X is a matrix such that it columns have 0 mean and if X hat

is equal to XP, then the columns of X hat will also have 0 mean. Is this obvious to most

of you, not really is it, how many of you think it is obvious? Ok then let me just go over

the proof.

So, for any matrix A, 1 transpose A right so; that means, you have this vector this is a

vector or a matrix; yeah this is a vector right. So, I have a vector of n 1. So, 1 this is

nothing but a vector of n 1s. So, what is this product actually going to give me?

It will give me a vector containing n elements, what is each element?

Student: Sum of that column.

Sum of that column right, is this fine? Ok this is very obvious to see from if I have this

suppose I have 2 3 1 and 3 6 7 ok, and then of course, the corresponding.



(Refer Slide Time: 16:21)

So, if I do this multiplication I will get a 2 dimensional output which would be just 7 and

16 right? So, that is just the sum of that column this is fine.

Student: (Refer Time: 16:33)

(Refer Slide Time: 16:36)

So now, we have this X hat that is the transform matrix.  Now let us see if I do this

operation I X hat what happen. I can write it as this I can club it as this, what is this? It

will be all 0s because the original matrix was mean 0; that means, the of the elements of

all  the columns each column independently was 0; that what this  is going to be a 0



vector. So, 0 multiplied by any matrix is going to be 0. Now is it obvious I hope this is

obvious X transpose X is a symmetric matrix, I still have the proof for that, ok.

(Refer Slide Time: 17:06)

Now, if x is a matrix whose columns are 0 mean. Then a matrix sigma which I am going

to call as a covariance matrix, which is given by this is actually the covariance matrix.

How many of you agree with this; how many of you have seen the covariance matrix

before? Ok good. So, all of you agree that this is the covariance matrix if you do not

please raise your hands; If you do not you will not understand the rest of the stuff now

you have to be given the right in center, ok.

So, let us see be the covariance matrix of X. Now what is the covariance matrix actually

first of all tell me that? If I say that I have an n cross n matrix x 



(Refer Slide Time: 17:45)

Let me not make it any cross n, let me make it m cross n ok. What does the covariance

matrix actually capture; what is the dimension of the covariance matrix first of all?

Student: n cross n.

n cross n ok, and what does each entry of the covariance matrix capture the covariance

between the ith column and the jth column.

Student: (Refer Time: 18:09).

So, the entry ij of the covariance matrix captures, the covariance between the ith column

and the jth column is that fine. Now what is the formula for covariance suppose I give

you 2 columns right let us see I have give you x 1 1 x 1 2 x 1 3 and x 2 1 x 2 2 x 2 3, can

you give me a formula and of course, I will go up to k or rather m , right.

So, what is the formula summation?

Student: (Refer Time: 18:52).

i equal to 1 to.

Student: m.

m.



Student: (Refer Time: 18:52).

Mu 1.

Student: (Refer Time: 18:53).

Mu 2 anything missing?

Student: By m.

By m anything else in the denominator? No, no is it fine ok. So, an what is mu 1? Mu 1

is just an average of this ok. So, this is the covariance formula now if the mus are 0, then

what does this boil down to?

Student: (Refer Time: 19:14).

 x 1 i into x 2 i , what is this quantity actually?

Student: (Refer Time: 19:22).

This is the dot product between the ith column and the jth column fine ok. Now that is

pretty much the explanation right. So now, the C ijth entry is supposed to be given by

this formula. If the means are 0 you are just left with this formula. And this is nothing but

the dot product between the ith row and the jth, I mean the ith column and the jth column

is that fine ok.

And now if you write it as a matrix then you can just say that it is the ijth entry of the X

transpose X matrix everyone gets this; no one has any confusion the people who raised

their hands fine good.



(Refer Slide Time: 20:09)

So now ok. So, we now this  is  where the we are so far, that we have assumed that

someone has given us these dimensions’ p 1 to pn, which we have put in the matrix p

right. And we have also made a case that X into P which is what I have written here

actually is just a projection of the original data onto this new basis right. Everyone gets

that ok. And I am calling that new projection or the new result that I get as X hat. So, that

is, what my transform data is.

What is missing here?

Student: (Refer Time: 20:42).

We do not know what p is that I am assuming someone has given me that P, now I need

to figure out what is the P here. Now using the previous definition, we get that this is the

covariance matrix of the transform data ok. So, let us just write that this is fine this is

fine, what is this?

Student: (Refer Time: 21:03).

Covariance matrix of the original data ok; So, I will just write it as sigma fine ok. Now

each cell ij of the covariance matrix towards the covariance between columns i and j of

X hat, where X hat is the transformed data, what is the property that you want to hold. I

give you 2 conditions or I will give you only one condition for now when i is not equal to

j.



Student: (Refer Time: 21:28).

0 ok, so, what should the covariance matrix look like?

Student: (Refer Time: 21:37).

Remember that this is, what is this? This is the covariance matrix of the transformed data

right that is what I started with right. This is the covariance matrix of this transformed

data, what do I want this covariance matrix to look like?

Student: Diagonal matrix.

A diagonal matrix because I want every non diagonal element to be 0 right; And this

point I am not telling you what I want the diagonal elements to be I am just telling you I

do not want them to be 0.

Well if it is 0 what would that mean?

Student: (Refer Time: 22:05).

That is the variance right if you take the along a diagonal, what you get is the variance it

is if it is not clear right now well return back to that. Right now we just know that the off

diagonal elements are the covariance between the ith and jht column and we want that to

be 0. So, we want this condition to hold. This is something very new that you have never

seen in this course before they have actually not seen in this course before have you seen

this or not?

Student: (Refer Time: 22:3).

Thank god fine.

So, what is this?

Student: Diagonalization.

The diagonalization of which matrix? This matrix right and what was this matrix it was

X transpose X this is clear. So, what is the solution? All rows always lead to.

Student: Eigenvectors.



 Eigenvectors, right.

(Refer Slide Time: 22:51)

So, we want P transpose sigma P to be a diagonal matrix and we know which are the set

of vectors which I put in; P such that they will diagonalize sigma.

Student: Eigenvectors.

Eigenvectors of.

Student: (Refer Time: 23:06)

X transpose X right ok, why did I put this; it is the matrix of the eigenvectors right. So, it

is a matrix of the eigenvectors of X transpose X.

So now have we finished it,  do we know principal  component  analysis  now. So, we

started with the intuition that we wanted to transform the data ok. I cannot stress enough

that we want to transform the data not chopped off dimensions from the existing data ok;

that means, we need to project the data to a new basis and we had a couple of conditions

the  variance  should  be  high,  and  the  covariance  should  be  0  we have  satisfied  one

condition which is the covariance is 0. And we arrive at a solution which says that the

eigenvectors forms the basis that you should project on; so, that the covariance would be

0 ok.



So, we have a solution, we know exactly which basis to use to represent the data ok; so,

that the covariance condition is satisfied, what about the variance; did we do anything

about the variance?

Student: (Refer Time: 24:10).

So we will come back to that, fine.

(Refer Slide Time: 24:08).

Why is this a good basis; what does the what is a good basis, the best basis?

Student: Orthogonal.

Orthogonal right because the eigenvalues of X transpose X are linearly independent that

is and they are also orthogonal because X transpose X is a dash matrix.

Student: (Refer Time: 24:24).

Ok.

Good real symmetric ok, good, ok.

So, this method is called the Principle Component Analysis for transforming a data to a

new basis. And that where the dimensions are non-redundant because they have low k

covariance and not noisy, because they have high variance. The second part I have not



proved right and I will get to that at some point fine. Ah No that is what we saw right no,

what is I did not get that now in practice how many eigenvectors would you have.

Student: n eigenvector.

N eigenvectors, do you want to keep all of them? Which ones will you throw away.

Student: (Refer Time: 24:58)

The low variance ok.

And now in the next interpretation actually we will try to see, what is the; what happens

when you throw away the least important dimensions right? What do you mean by the

least important dimensions?


