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PCA: Interpretation 2

So, that is what we look at in the second interpretation of PCA right.

(Refer Slide Time: 00:17)

So, again we have the same setup that given n are linearly independent for n orthogonal

vectors. We can represent x i exactly as a linear combination of these vectors, what do I

mean by exactly? Perfect ok; if you actually describe the whole things in words ok. So,

that is exactly what I mean right. So, you are going to write x i as alpha 1 i into p 1 plus

alpha 2 i into p 2 and so on. And when you do the summation on the LHS on the RHS,

you just get back the r lhs when you do the summation on the right hand side you get

back the left hand side ok.

So; that means, it can exactly be represented, when you use all the n eigenvectors now, if

I start chopping of stuff what will happen?

Student: (Refer Time: 01:04).



It will just be an approximation ok. Now we this is what I meant, and this is this the

equation holds; that means, this is exact and we know how to find the alpha is, because p

js are conveniently orthonormal. So, we know how to find that easily ok. Now what if we

consider only the top k dimensions, what is going to happen? There is going to be some

error in the reconstruction I am not capturing all the information in my original data, but

there is some error which I am not being able to capture, and I made a conscious decision

that that error is not important I am willing to let it go. 

Hence I want to represent the data using fewer dimensions ok. So, this is exactly what

you do in PCA when you take the top k dimensions is this fine ok. So now, we want to

select p is such that; we minimize the reconstructed error ok. And this is again erratic

actually we should try to write it as, x i minus x, since these are vectors and the square of

vectors would just meet this right.

(Refer Slide Time: 02:16)

So, but you get the point right were just trying to do the element wise squared error loss

were trying to minimize that ok, we want to do this. So now let us try to see that if you

are aiming to do this, what is the condition that, we arrive at ok. So, no I thought I would

ask for some changes on this, let  us see if you guys oh god ok; I will ask for some

changes on this it is ok. I think they forgot let me just see how to deal with this ok. 

For a minute all of you can you just bear with the fact that these are actually vectors and

not scalars. So, this square actually does not mean anything it actually means x i minus x



i hat transpose, x i minus x i hat. So, when I use square with vectors this is what I mean

is that ok, everyone can work with that notation fine ok.

(Refer Slide Time: 03:09)

So now what is x i actually the real point right the correct point which can be obtained by

the  full  reconstruction,  if  you consider  all  the n dimensions,  what  is  x  i  hat  just  an

approximation where you are considering only the k dimensions. Remember that each of

these quantities is a vector fine ok. Now what is happening here? Let me just try to say

this ok. So, let me just do this way. So, this is your original x and you are actually writing

it as a linear combination of your ps somewhere you will have alpha k pk and then all the

way up to p n right. 

So, this is p k alpha n ok. Now what is this full thing this is x and what is this x hat ok.

You see the picture what is the equation trying to tell you ok. Now what is the difference

between these two then, these guys right if I want to take difference between x and x hat

everyone gets that it is the remaining term say; that means, alpha k plus 1 into p k plus 1

up to alpha n into p n is that clear.



(Refer Slide Time: 04:22)

So, can I write it as yeah can I write it as this ok. So, you get this right. So, I am only

taking these guys because the rest will get subtracted. So, one is the full n dimensions the

other is only k dimensions. So, if I take the difference between them what remains is k

plus 1 to n dimensions, and that is exactly what I have written here ok.

And now I am coming back to the proper notation where this is a vector right. So, I am

writing the square as the dot product between the same vector is this ok. These are the m

data point right; this sum this is overall the m data points you need to minimize that is

that clear ok. So, this is fine, now beyond this is just some rearrangement. So, I have just

expanded out that summation, this is what it would look like right. I have just expanded

out these 2 summations. 

Now let us try to do this in your head and see what are the kind of terms that you get

there are 2 different types of terms that you will get. So, first of all let us understand that

when you expand this you will end up with a lot of dot products, you will get a dot

product between this and this and this and so on right. So, can you split those terms into

two different types?

Student: (Refer Time: 05:37).

Square terms; So, one where i is equal to j and one where i is not equal to j is that clear

fine. So, let me just write it as that. So, I will have k plus 1 to n right; that means, n



minus k terms, where i would be equal to j right so; that means, pk plus 1 was getting

multiplied by k pk plus 1, pk plus 2 was getting multiplied by pk plus 2 and so on and

then I will have these remaining terms where i is not equal to z right. So, these are the

dot product between the other vectors is it fine. You see why I have split it this way, what

will happen now? The second term will go to 0 ok; and what about the first term? Alpha

is a square ok, now what is alpha ij actually how did you find alpha ij.

Student: (Refer Time: 06:28).

 It is a dot product between we did this right finding any of these components is just

taking the dot product between x i and that dimension. So, x i transpose pj is that fine ok.

Is this fine and again this is slight abuse. So, this is actually, what no this is right, a this is

sorry sorry, sorry sorry sorry I am just going to write it as this is this fine. I just written it

twice and I can change the order. Since, it is a dot product ok. 

Now, what I am going to do is, so this is actually summation over an index i and a

summation over an index j. And I can change the 2 summations I can interchange them

ok. So, that is what I am going to do now is this fine. I will push the summation all the

way inside what is this actually this entire thing actually m times covariance of.

Student: (Refer Time: 07:25).

So, is this I is this what you are telling me that this is m x transpose x is this fine. How

many if you do not get this I see a lot of blank faces how many if you do not get this

quite a few; so, this is so i is equal to 1 to m right. So, you are going over the data points

ok. So, this what is the dimension of this actually?

Student: n cross 1. 

n cross 1 and this is 1 cross n, what does this product give you?

Student: (Refer Time: 07:49).

n cos n what are the entries in this matrix. So, this was say x 1 1 up to x 1 n. And this is

again x 1 1 up to x 1 n ok. So, that is going to be x 1 1 square or rather let me just write it

in the generic form right. So, it is going to be x 1 i into x 1 j right is that fine. And how

many such matrices are you adding?



Student: (Refer Time: 17:07).

m of these. So, what would you get then? What would the first let us. So, ok so, let us do

this. So, the first entry of this matrix is going to be x 1 1 square, what about the first

entry of the next matrix in this series?

Student: (Refer Time: 08:40).

 x 2 1 x 2 1 square right ok. So, this is slightly tricky to demonstrate, let me just a give

me a minute I will just collect my thoughts and do it properly ok. Let us take a small

example ok. So, x 1 1 x 1 2 x 1 3 suppose we have a 3 dimensional matrix 3 dimensional

data. So, I am taking a sum of m such matrices ok; i equal to 1 to m; that means, this is

going to vary this indexes the first index is going to vary from 1 to m. Now, let us see the

first matrix and let us look at the first element of that matrix the first element of this

matrix is going to be x 1 1 square ok.

Now, let us look at the next matrix, what is the next matrix going to be? It would be x 2 1

x 2 2 x 2 3 right and multiplied by x 2 1 x 2 2 x 2 3, what is the first element of this

matrix going to be?

Student: (Refer Time: 09:45).

x 2 1 square what about the third one? x 3 1 square this is fine so far now you are adding

all these matrices. So, what is the first element of the resultant matrix going to be x 1 1

square plus x 2 1 square plus x 3 1 square, what is this actually? This is the dot product

of x 1 with itself right, and what does that give you the variance if the data is 0 mean

right ok. Now can you make a similar argument of the ijth entry is going to give you the

covariance between the ith and the jth entry is that clear right. You could do a similar

analysis you can actually work it out after going back, how many of you have found

comfortable with this? There is still many who are not ok.

So, let us look at an ijth entry right. So, can someone help me with say that 1 comma 2

entry or the first matrix what is it going to be x 1 1 into x 1 2 right for the second matrix.

Student: (Refer Time: 10:52).



x no this is some ya correct and for the third matrix 3 2 ok. Now what is this sorry what

is the summation of these? When you take the full sum you will get these 3 as as, what is

this in this summation tell you?

Student: (Refer Time: 11:10),

Covariance between.

Student: First and second

The first column and the second column is that clear now, is it with everyone now, fine.

So, what you have here is actually the covariance matrix you seems to be lost is it with

you sure fine. 

(Refer Slide Time: 11:32)

So, what we have here is something of this form ok.



(Refer Slide Time: 11:37)

So now what we want to do is we want to minimize this quantity subject to the following

condition is that ok. What is the solution for this? If I did not have the summation ok;

Suppose I just wanted one dimension. So, I want to minimize say p sig p transpose sigma

p such that p transpose p is equal to 1, what is the solution for this?

Student: (Refer Time: 12:08).

Smallest eigenvalue of sigma right; and you can show by induction that if you want k

such things that here I am looking for n minus k such things right. Then these would be

the n minus k smallest eigenvalues of sigma, but now I am talking about the smallest

eigenvalues, but in the first solution I said we need to pick the largest eigenvalues. So,

what is the difference?

Student: (Refer Time: 12:35).

These are the ones we are throwing away; these are the ones along which the error is

going to be minimum if we throw these away the error is going to be minimum. So, we

will  throw away  the  last  n  minus  k  dimensions  which  means  well  keep  the  first  k

dimensions is that clear. So, you arrived at the same solution is that right so; that means,

in  PCA  you  are  actually  trying  to  pick  the  dimensions  in  a  way  such  that  your

reconstruction error is minimized,  and this  was exactly  what our reconstruction error



was. So, do not worry about this math bit, just see that we started with this quantity this

is what we wanted to minimize ok. 

And we did some trickery and we came to this formula that minimizing that error is

equivalent  to  minimizing  this  quantity.  And  for  this  we  know  the  solution  that  the

solution is the smallest eigenvalue and we want n minus k such things. That means, there

would be the n minus k smallest eigenvectors is that clear; that means, we are going to

keep only the k largest eigenvectors ok; that means, you are going to project your data on

to k largest eigenvectors.

(Refer Slide Time: 13:37)

Now, so the key idea here is this right minimize the error in reconstructing x i  after

projecting the data onto the new basis.



(Refer Slide Time: 13:43)

So, let us take an example and we will work with our toy example again.

(Refer Slide Time: 13:45)

So, this was the data that we had and suppose I give you a new basis which is 1 comma 1

and minus 1 comma 1 ok. This is a new basis this is an orthonormal basis orthogonal

basis you can see that u 1 transpose u 2 is equal to 0 ok.

Now, I need convert it to an orthonormal basis. So, I have just divided by the magnitude

is it fine. Now consider the point 3.3 comma 3, this was our original point according to

which coordinate axis x comma x; that means, this was 3.3 and this was 3 ok. Now I can



find the alpha is right because this is an orthonormal basis I can directly find the alpha is,

now the perfect reconstruction would be this.  So, actually if I do this  I get back the

original point.

Now, what would happen if I throw away the second dimension, because the second

dimension had corresponds to a smaller eigenvalue I will get this. So, you see that the

point is still  close to the original point I have not actually lost much right. What has

happened is I have actually projected the boy lie point on this line right, the line x equal

to y that is, why I get x equal to y. And in doing that I am not losing much information

from the original data is this clear right. So, you understand what happens when you

reconstruct the data fine.

(Refer Slide Time: 15:18)

There is no end to this ok. So, just to recap the eigenvectors of a matrix with distinct

eigenvalues are linearly independent. And we use this fact conveniently at least in the

case of square matrix where the also happen to be orthogonal. So, we know that they can

form a very convenient basis and PCA exploits this to find the top k eigenvectors which

to be retained. 

And  while  doing  this  they  have  seen  that  two  things  are  at  least  ensured  one  the

covariance between the dimensions is 0 because that is exactly how we formulated it and

found the solution. We saw that it turns out that we need to diagonalize a certain matrix

and the solution is the eigenvectors.



We also saw a different interpretation where we saw that it is the same as throwing away

the  dimensions  along  which  the  error  would  be  minimum  right.  And  both  these

interpretations led to the same solution which was project the data onto the eigenvectors

of the covariance matrix of the original data. And this n minus k dimensions current

contribute very little to the reconstruction, now what is the one thing which I have not

proved yet? What was our wishlist?

Student: Variance and covariance.

Variance and covariance right high variance low covariance. I proved low covariance, I

have  also  proved  something  with  respect  to  reconstruction  error  because  that  is

something I require for auto encoders. So, just remember this bit about reconstruction

error.


