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(Refer Slide Time: 00:17)

So, with this we will move on to the last topic in the so, that is something that you will

have to so, the way I would do it, right is that you keep aside some 100 images from your

data  as  validation  data,  ok.  Now  once  you  have  learned  these  eigenvectors,  try  to

compute the reconstruction error for these 100 images. And just vary it, right 200,000,

10,000 written as many dimensions as you can, and see at what point is a reconstruction

error, ok. For you, right and this is assuming that you have some notion of what is a

reasonable reconstruction error. So, we all know that the minimum is 0, right.

But if you have 0.5, then maybe for face database it might be, ok. Right, but if it is a

database where you are trying to look at mechanical parts, right. So, suppose you are

looking at motors and rotors from a machine assembly. Now there you want to be able to

distinguish minor detects defects on this and a detect could a defect could actually just be

one single  or  2  pixels  getting  different  from the  original  image,  right.  So,  there  the

reconstruction loss would be much needs to be much more robust, you get the point? So,



it depends on your application. So, you will have to take some validation data either have

a domain expert to tell you what is reasonable or go by the number that you get, right.

And this is the validation error that I get.

So, everyone understands the question and perhaps the answers, ok. So, we now go to the

last module.

Student: (Refer Time: 01:40).

Yeah, if you can.

Student: (Refer Time: 01:41).

Yes, you can now project any face into this database A. So, that is the Eigen basis that

you have got, you have got the basis vectors, now any data you can project onto this

basis.

Student: (Refer Time: 01:54).

Now, so, if you are trying to learn these eigenvectors by say using 100 images all of

which belonging to a particular demographic, say all Gaussian images, right. And now at

the runtime you have an Asian image, then you will have; obviously, have some error

right, but you have large even of data, say if you have if you are constructing this from

million images, then it should generalize that is I mean just as for any machine learning

algorithm, right.

The training it from small data and you bring out some outlier at test time it is not going

to work, right, but if you have reasonable data it should generalize , any other questions?

To calculate the eigenvectors x is m cross 10 m cross 10 k yes. So, so, so now, we move

on to the last topic for the basic portion, and the next class we will do auto encoders will

be back to dpl networks so, singular value decomposition, right.



(Refer Slide Time: 02:50)

So, this is actually the stuff that I need an important theorem from here at multiple 2

places in the course. So now, before doing the, right let us get some more perspective on

what eigenvectors do and why are they actually important, ok.

(Refer Slide Time: 03:05)

So, let v 1 to v n be the eigenvectors of a and let lambda one be the corresponding Eigen

values. So, we know this a v 1 equal to lambda v 1 and so on, ok. Now suppose all the

vectors  in  R should be R raised to  n,  ok.  So, if  a  vector  x  belonging to  Rn can be

represented using this basis, ok. Now what if I am interested in the operation A into x,



what is the advantage of representing it using this basis? So, this is what you are saying

the other day, right.

Student: (Refer Time: 03:54).

What  is Ax it  is a matrix  vector multiplication,  right.  And it  is going to be a heavy

computation. Now if all my vectors in Rn are represented using the eigenvector as the

basis, what happens to this matrix operation?

Student: (Refer Time: 04:16).

It reduces to.

Student: (Refer Time: 04:21).

Let us see so, I was interested in Ax, but I know x is this. So, you get this step, and what

happens finally? Do you have the matrix anywhere here. So, what happens to the matrix

operation?

Student: (Refer Time: 04:41).

It reduces to a sum of scalar operations, right. If your vectors were representing using the

eigenvector as a basis, ok.

So, this is one reason why this is important, right. So, you can now get away of the get

rid of the matrix operations and just do scalar operations, right. Ok. So now, there is a

catch here which I am going to ignore, just to try it if I bring in the catch you guys will

get confused. So, I will ignore if anyone has a doubt maybe talk to me after the class, but

for now let us go with the fact that the matrix operation reduces to a scalar operation, ok.



(Refer Slide Time: 05:19)

Now, so far what we have done is discussed square matrices, I have said that they are the

villains of linear algebra, but who are the super villains of linear algebra , rectangular

matrices everyone says that, but why. Imagine what they do to a vector yeah. So, can

rectangular matrices have an eigenvector?

Student: (Refer Time: 05:45).

Yes; obviously, yes that I mean any matrix can have an eigenvector.

Student: No.

No why? Can you write something of this form? You can not, right. Because when the

matrix operates on an n dimensional vector what does it give you?

Student: (Refer Time: 06:01).

An m dimensional vector, right; hence they are super villain, right. Because they take the

vector from one space and transform, it to a completely different space that completely

lots lost it is identity, right. So, that is why rectangular matrices are even harder.

So now we just saw that for square matrices this eigenvectors form a very convenient

basis where these operations reduce to a scalar operation. But now rectangular matrices

do not even have eigenvectors. So, then cannot we have the same advantage there? Can

we have the same advantage  there?  You can not,  right  because  you do not  have an



eigenvector, but I would teach you about singular value decomposition. So, I better have

something; so, get the connection, ok. There is a problem with square matrices with the

rectangular matrices, ok. So now, let us see. So, we will try the aim is to see if we have

something equivalent to this scalar transformation that we had for square matrices, ok.

How many of you have seen this in linear algebra before? So, you know whatever I am

going to talk about,  fine.  So,  the result  of Ax is a vector  belonging to R m and the

original x belongs to R m. So, we do miss it miss out on this advantage that you could

have reduced the matrix operation to a scalar operation, and now we will try to see if we

can still get back that advantage, ok.

(Refer Slide Time: 07:32)

So,  notice  this  is  matrix,  you  can  think  of  it  as  a  function;  which  provides  a

transformation from Rn to Rm ok. So, what is the set of inputs to the matrix? It is vectors

belonging to Rn, right that is the set of input.

Now, suppose we had a pair of vectors v 1 u 1 v 2 u 2 vk u k, each belonging to these 2

different  universes one is Rn the other is Rm, ok.  And there was a specular relation

between them that A into vi is equal to sigma into ui, suppose I am just being ambitious

let us see whether we can actually have this pair, but suppose we had this pair, then can

you connect this back to the discussion on scalar operations, ok. So, let us just see that in

detail, and we will of course, assume that these are orthogonal and form a basis. So, the



vi is form a basis in Rn and the uy is form a basis in Rm, ok. Is that clear that is all

straightforward, we have these vectors.

Now, every a vector belonging to Rn which was the input space can be represented using

a linear combination of v straightforward, and any vector belonging to the output space

can be represented of.

Student: (Refer Time: 08:55).

Of  u,  right,  so,  that  means,  any  x  in  the  input  space  I  can  write  it  as  this  linear

combination. And now if I do the matrix operation what happens?

Student: (Refer Time: 09:09). 

You get this A into vi, what is A into vi? Sigma ui sigma ui, I have still not shown you

how to find these sigma is ui by the way, right, ok? Once again the matrix multiplication

reduces to a scalar multiplication, ok.

(Refer Slide Time: 09:30)

So now let us try to look at a geometric interpretation of this.



(Refer Slide Time: 09:32)

So,  what  you  have  is  this  original  space  which  is  Rn  you  are  using  a  as  a  matrix

operation, right as a function and you are transforming vectors from n to Rm right. So,

this is the space transfer that I was saying it vectors are being picked up from Rn and

being put into R m, ok. And Rn is a space of all vectors which can act as inputs to this

function, and Rm is a space of all vectors which are the outputs of this function Ax, ok.

Now, we are interested in finding a basis u v such that v is the basis for the inputs, when

I say basis all of you should immediately start thinking of dash vectors.

Student: Orthonormal vectors.

Orthonormal vectors orthogonal or orthonormal, right; Once we have orthogonal we do

not care about the rest,  u is the basis for the outputs;  such that if the inputs are and

outputs are represented using this basis, then all our matrix operations reduce to scalar

operations.  So,  we  are  just  trying  to  find  the  rectangular  analogy  for  the  square  a

phenomenon that we observed, ok. That is what were trying to do, now can you tell me, I

have told you that if such a vn u exists, then you could do this. Can you give me such a

un?

So, what do we mean by so, here I said actually I said this, right, that the dimension of

the row space is actually k and the dimension of the column space is also k what do you



mean by the dimension is I mean, right. Here I am telling this is Rn and this is Rm, and

now I am telling you the dimension is k, what do I mean by that?

Student: (Refer Time: 11:05).

The only k linearly independent vectors, fine.

(Refer Slide Time: 11:11)

And this is again something from linear algebra which I expect you to know is that all

possible vectors in Rn only a subspace belonging to Rk can actually act as input to a x to

produce a non-zero output. So, I am talking about a null space column space and things

like that right. So, this should be clear if it is not it is, ok. It is not very important at for us

right now right.

And hence we have only k dimensions, fine.



(Refer Slide Time: 11:38)

So, let us look at a different way of writing this. So, you have this a v 1 is equal to sigma

1 u 1 Av 2 is equal to sigma 2 u 2. So, I can again do the same trick that I put all the vs

into one matrix; where vi is are the columns of this matrix. And I will put all the us into

another matrix where uis are the column of this matrix, is that fine everyone, ok? So far

and then I can write it as this matrix operation. Same thing that we did when we are

doing eigenvalue decomposition, right; So, we had written it as A into u is equal to u into

sigma, right. Because there we had the condition that Ax is equal to lambda x, now we

have a u is equal to sigma v or rather the other way around. So, Av is equal to did I

missed up, did I no, right?

Student: (Refer Time: 12:29).

Sorry.

Student: (Refer Time: 12:32).

Fine, yeah so, Av is equal to sigma into u, ok.

So, is this fine no no, but when you do the diagonal operation you will get it as u into

sigma y. The same way as a x equal to lambda x, but when you write it is A into u is

equal to lambda comes later on right. So, everyone is fine, right? Can I go ahead, ok?



(Refer Slide Time: 12:56)

And if we have k orthogonal vectors; so, remember I said that this basis consists only of

k dimensions, right. Because that is R the set of vectors which can act as input to A. So,

what I, but I want a basis for the full Rn. So, what do I do for the remaining n minus k?

Have you heard this gram schmidt orthogonalization, right. So, if I give you if there if

you are trying to construct a basis for n, ok. For Rn rather and if I give you k orthogonal

vectors, they can do k you can construct the remaining n minus k using Gram Schmidt

orthogonalization right. So, you can get the full basis, fine. So, let me just see and this is

orthogonal ok. So, you can write so, you see these 2 forms can you relate it to something

that we have seen before in the course. 

This is singular value decomposition, what else did we see before?

Student: (Refer Time: 13:53).

Eigenvalue, so, this exactly the same forms, right; And I have used the same set of tricks

to arrive at it right. So, I first put the vectors into a column as columns into a matrix then

wrote this in the matrix format, and then pre multiplied post multiplied by certain things

and I got these 2 formats. And remember that v and u both are dash matrices.

Student: (Refer Time: 14:13).



Orthogonal matrices, right. So, that inverse is just their transpose, so, so far everything is

fine, now I still do not know what U and V are, all this analysis is assuming that I know

what U and V are. So now can you tell me how to get these Us and Vs.

(Refer Slide Time: 14:30)

Suppose v u and sigma exist, ok; then we can write this right. So, A is u sigma v so, A

transpose would be the transpose of that. Now can you work with me, what is the next

step?

Student: (Refer Time: 14:47).

Ok next.

Student: (Refer Time: 14:51).

Oh ya, ok, this is u sigma v transpose. So, then this would be I think the next step is no

the next step is also wrong, that fine? Ok fine, I just had some error with the transpose,

ok. What will happen now? What will disappear from here?

Student: (Refer Time: 15:26).

U transpose U that is I write because U transpose the inverse of U.



(Refer Slide Time: 15:30)

So, you get this, what does this look like? This looks like the eigenvalue decomposition

of.

Student: A transpose A.

A transpose A; that means, v consists of the.

Student: Eigenvectors.

Eigenvectors of the.

Student: A transpose A.

A transpose A; So now, can you tell me what u would?

Student: (Refer Time: 15:54).

 Ok fine.

So,  this  looks  like  the  eigenvalue  of  eigenvalue  decomposition  of  A transpose  A.

Similarly, we can show that a A transpose is equal to u transpose sigma square u, ok. So,

then u is the set of Eigen vectors of a A transpose, right. And now here what was with

will the eigenvalue decomposition always exist for a matrix.

Student: No.



No under what conditions would it exist? First of all it has to be a square matrix.

Student: (Refer Time: 16:32).

 Ok right,  but  now for  a  rectangular  matrix  would  be  singular  value  decomposition

always exist.

Student: Yes.

Yes, right.  Because it  depends on the eigenvalue decomposition of square symmetric

matrices, ok. Is that fine, ok? So, for any matrix shall always have the Eigen value oh

sorry the singular value decomposition, ok.

(Refer Slide Time: 16:58)

So, this is perhaps ya, ok, now just one last bit and let us see if all of you can understand

this. So now, I can write A in this form this is nothing but what I already said, right. This

is u this is sigma this is v transpose, ok. Now from here from this step do you see how I

got to this step? This is something that we were struggling with yesterday also, when we

were trying to find out summation x i x i transpose something similar here, you know the

4 ways of multiplying matrices, right. So, this is which way one of the ways, ok.

Ya so, does everyone get this, right. Ok. So, a simple thing would be first to just take

these sigmas inside, right. Because this is a diagonal matrix, right this is all 0’s. So, these

are actually you can write it as sigma 1 u 1 sigma 2 u 2 and sigma k u k, right.



Now, this ends up being the product of 2 matrices, right. And you can write it as a sum of

columns into rows right. So, what I am writing it as a sum of sigma 1 u 1 multiplied by v

1. So, sigma 1 u 1 into v 1 transpose is a scalar matrix vector matrix right. So, each of

these terms here is a.

Student: Matrix.

Matrix, and you are adding k such matrices, ok. Now try to relate it to reconstruction

error. You are taking a matrix trying to write it as sum of many matrices. If I trim some

terms from this some terms from this sum what would happen? If I have all the terms,

then what would happen? I will get a back exactly. If I drop some terms what would

happen?

Student:  (Refer  Time:  18:57)  I  get  an  approximation  of  A,  how  good  would  that

approximation be?

Student: (Refer Time: 19:03).

First is depending on the number of dimensions, but is there a natural ordering in these

dimensions if I want to throw away some dimensions which one would I throw away.

 student: (Refer Time: 19:11).

Smallest.

Student: Singular values.

Singular values, sigmas are the singular values. So, you see that this is getting multiplied

here,  every matrix  is  getting multiplied  by the singular  value corresponding singular

value. So, if I drop out the terms which have the smallest singular values, then those

matrices  the  elements  would  have  been very small.  So,  I  will  not  lose much in  the

approximation right; so, again the same idea that I am trying to approximate the original

matrix by a smaller rank, right. 

By of so now, the original matrix had m cross n entries, ok. How much if I use only k

eigenvectors or the sorry k singular vectors or k dimensions to approximate it, how much

storage would I need? How many values do I need? So, the original matrix was m cross

n. How many entries are there here?



Student: (Refer Time: 20:06).

Each of this is how much?

Student: (Refer Time: 20:10).

M for ui plus n for vi, ok. And plus 1 for the sigma, and how many of these are there?

Student: k.

K  so,  if  k  is  very  less  than  your  m  and  n,  right.  Then  again  you  will  have  some

compression you get this ok. So, all of these ideas are related and I want you to be able to

connect them, right. That all of this is towards doing some approximations reconstructing

some reconstructing a matrix from it is components, and doing this reconstruction in a

manner that you end up making minimum error in the reconstruction. Is this idea clear?

Even if some part of the math is not clear, is this idea clear? How many forget this? Ok

so, some of you do not, you do not?

Student: (Refer Time: 20:59).

Ya so,  what  is  the  original  dimension  of  A?  M  cross  n,  right  now  I  am trying  to

reconstruct it using a sum of sum k terms, ok. So, hence this k comes, now each of these

terms how many elements do I have? I have ui which is of dimension m, I have v i which

is of dimension n and then I have the sigma I which is of dimension one, right. And I

have k of these. So, this is the total amount of storage that I need. I am saying that as k is

much less than m and n which would typically be the case, right. 

Then you are getting a much lower space reconstruction of the original data, right. And

you are doing this reconstruction smartly, because you are not taking any k dimensions,

you are taking the k most important dimensions, and this most important is defined by

the singular values, this is designed by the sigma is that fine?



(Refer Slide Time: 22:02)

Ok and actually there is a formal theorem which says that sigma 1 u 1 v 1 transpose is

the best ranked one approximation of the matrix is; this a rank one matrix A sigma 1 u n I

hope you guys have done the assignment, right. Sigma 1 u 1 v 1 transpose is the rank one

matrix. And if I take this idea further, this summation is the best ranked 2 approximation

and if I keep going, this summation is the best rank k approximation. So, what it says is

that if you are trying to reconstruct the original matrix, right from these components. And

if you go by the Eigen or the singular values, and you pick the ones corresponding the

top k singular values then the best that is the best possible reconstruction that you could

have done, ok.

Now, how  do  you  formally  define  reconstruction?  How  would  you  make  it  as  an

optimization problem? What are you trying to minimize?

Student: (Refer Time: 22:59).

The actual matrix has some values which is the matrix A, ok. B is the reconstructed

matrix using only k dimensions,  how many of you understand? What  is  this  product

saying what is this?

Student: (Refer Time: 23:20).

First k columns of u, ok; These are the k singular values, and these are the first k rows of.

So, ok I was just talking about this is the first k columns of u, these are the k singular



values are put across the diagonal, and this is the first k rows of V transpose, ok. And this

is exactly the product which I showed you here, is that fine?

(Refer Slide Time: 23:49)

Ok so,  there is  a  theorem this is  called  the svd theorem it  says that,  if  you want  to

reconstruct a then this is the best rank k approximation that you can get. Now if I want to

paused it  as  an optimization  problem what  will  I  say what  would I  have minimized

actually. This is the reconstruction, right. So, let us call it a hat actually, and what does

this mean? This is the dash norm.

Student: (Refer Time: 24:15)

Provenience  norm,  what  does  the  provenience  norm  give  you?  Squared  difference

between the elements, right roughly speaking ok; so, it will tell you what is the square

difference between the ijth element of a and the ijth element of B. So, whenever we have

this situation if you are trying to if this is our objective function that we have trying to

reconstruct A, or try to transform something and get a predicted A or A reconstructed A

then the best possible reconstruction would be given by this solution.

So, this optimization problem has a solution that you just use the eigenvectors of xx

transpose and sorry a A transpose And A transpose A, right. Is that clear? Ok so, this is

the theorem that we will be using when we are talking about autoencoders, and we will

try to connect auto encoders to pcm ok. So, just revise this is the prerequisite for next



class whatever we have done in the last 3 sort of extra lectures, you have to revise it

before you come for  class tomorrow, right,  ok.  And yeah this  is  sigma is  just  some

terminology sigma is actually the square root of lambda I that was obvious, and U is

called the left singular matrix of a and V is called the right singular matrix of A.


