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Regularization in autoencoders (Motivation)

Then we will go to the next module, where we will talk about Regularization in auto

encoders, and we will talk about a Motivation for doing that.

(Refer Slide Time: 00:22)

So,  poor  generalization  so,  why do we need a  regularization?  People  have done the

machine learning course or any equivalent course, why do we need regularization? To

avoid.

Student: Or enable.

Or enable generalization, right? Now in the case of an over complete auto encoder what

is likely? Overfitting is likely, why is it so? What does what do you mean when you see

generalization actually, when you talk in terms of training time test time and so on?

So, generalization is essentially that your are training. So, remember that at training time

you are trying to  solve  an optimization  problem,  guyse  you are looking only at  the

training data. So, it is quite likely that you will drive the error to 0 for the training data;



that means, you have learnt perfectly everything for the training data, right? But now it is

also possible that when I give you a new test instance which you had not seen during

training; that means, you had not seen instance while doing the optimization; that means,

this instance did not contribute to your loss function.

Then it is very lightly that when I gave this instance, then you would get a non 0 loss or a

loss much higher then what you get for your training data. Does that make sense? That is

what over fitting is and it leads to less generalization. Your model should have generalize

to  unseen  data,  but  it  cannot  do  this  one  typical  situation,  where  over  or  where

generalization happens is, if you have a dash number of parameters. Now what did I ask

actually?

Student: Generalization.

No, ok, if a case where a over fitting would happen is when you have a dash number of

parameters.

Student: Large number of.

Large number of parameters, right; now do you see why I am saying this? What is there

on the slide? An over complete auto encoder, what would it have?

Student: A large number.

A large number of parameters. So, what could it do?

Student: Overfitting.

Over fitting, what do we do to avoid over fitting?

Student: Regularization.

Regularization, ok so that is why we need regularization. I have still no told you why do

we need an over complete auto encoder, ok. Still that is an random variable I still need to

decide. But can this happen in an under complete auto encoder also it can right, because

under complete auto encoder just says that your k is less than n, it does not say how

much less it is. So, it is it is still have and depending on a data that you are trying to

model, it could still have a large number of parameters.



(Refer Slide Time: 02:58)

So, for example, let us take an example for the under complete case, suppose you are

doing image classification where you have a digit 3 at the center of the image, ok. And a

lot of these are white spaces. So, what is the dimension? And suppose this is a 100 cross

100 image. What is the dimension of this image input? How many if you cannot multiply

100 into 100?

Student: 10.

10 k right of this a lot of data is not important, right? So, my n is 10 k and at least by this

thing that I have drawn it looks like probably only 20 percent of that is what actually

captures the digit, but now if I choose k to be equal to 1000. It might still be large for this

application.  So,  I  am using  an  under  compete  auto  encoder,  but  it  could  still  be  a

situation that my under complete is still having a large number of parameters, all of get

this intuition?

It is a very weird example, but still really do you get the intuition you could have a very

high dimensional input, and you might think you are shrinking it a lot. But there is so

much redundancy in your input that even that shrinking still leads to a large number of

parameters and you could still over fit. Every gets the idea? Therefore, even for an under

complete auto encoder, you could still need over a regularization, is that ok?



So, fine so, that was the motivation, since the over complete case of course, the model

can simply  learn  to  copy, we have seen that,  and that  is  why we need to  introduce

generalization,  fine.  Now  what  is  the  simplest,  sorry,  we  need  to  introduce  a

regularization, what is the simplest regularization technique that you know? That is not

the simplest l 2 regularization.

And you see why I say that is the simplest, we can take the derivative for those of you do

not get it do not worry we will get to it. Or if you do not get to it do not worry.

(Refer Slide Time: 04:41)

So, the simplest solution is to add the l 2 regularization to the objective function. So, this

was my objective function, I wanted to minimize the squared error loss. I have added a

term to this. What does this term do? What does it doing? First of all, tell me what is this

quantity, theta is a.

Student: All.

All the parameters that you have; and I am assuming that they have just put it into large

vector I am taking the l 2 norm of that vector. So, even you though you have those

matrices, and just flattening them all out and putting them into a large vector called theta,

right. So, what is happening here? I am not allowing my weights to shrink or grow, grow,

because if my weights are very large what would happen?

Student: Grow, grow.



This  quantity  would  grow. So,  then  I  cannot  really  minimize  this  minimize  this  as

effectively as I want, right? Why this makes sense? How many of you why this makes

sense? So, I am now why am I not preventing the weights to go to 0? Ok, so, we will see

this in more detail in the next lecture. This is again a basic lecture on bias variance and

regularization and so on. So, we will try to arrive at a more reasonable answer for this.

For now, just see that I am putting some constraints and the weights.

So, effectively and I am doing gradient descent, I am not allowing the weights to take

very large values, I am trying to restrict them to a certain area. So, I am not allowing to it

to explore the entire w comma b plane, but trying to restrict it to smaller values of w

comma v how many of you get this intuitive explanation.

So, in other words what I am trying to do is, that I am not giving it in a freedom so that it

can completely drive the error on the training data to 0. And my hope is that if I do not

do this,  if  I  do  not  allow it  to  completely  memorize  a  training  data,  then  it  should

generalize  well  on the test  data.  Is  that  intuitive  fine?  Now I  have changed the loss

function again. I have the square, I have told you how to do it for squared error loss, for

the cross entropy loss and so on, but now I have changed the a loss function again. So,

again I need to teach you back propagation, no what will change now? Again I need to

derive with respect to the last layer.

What is the minimalistic change that is going to happen now? Just tell me, this theta is

actually w 1 w 2 and so on, right. Just assume all the parameters, just flattened out into a

vector, fine? And now tell  me what is dou l  theta by dou w 1 going to be or let  us

simplify things. Let us call this l theta and let us call this omega theta. Let us call this l

dash theta, and then your l theta is the combination of these 2 terms. So, this derivative is

going to be a sum of 2 derivatives, out of that one you already know, what is the second?

Student: 2 times lambda.

Two times lambda w 1. So, it is a very simply change to your gradient descent update

rule. How many of you see that? Whatever update you will had just add minus 2 lambda

w 1 to that, ok, should have been 2 lambda w, but of course, you do a half here, so it is

fine, is it?.



(Refer Slide Time: 07:44)
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Another trick which is typically used at least in the context of auto encoders is to tie the

weights  of  the  encoder  and  the  decoder.  How does  that  help?  What  does  tying  the

weights mean? Now I appreciate what you are trying to say. So, one we have doing this

is just say W star is equal to W transpose. You will enforce that, you actually have only

one matrix  W, and here  you are using  W transpose.  Mathematically  does  that  make

sense? All your operations go through, because this is going to be n cross k, and this is

going to be k cross n.



So, whatever effectively done, I have reduce the number of parameters in my network,

right? I am enforcing, I am forcing this upon the network that I am not going to give you

2 sets of weights, you just learn the ws in a way such that when you use W transpose you

should be able to reconstruct this. How many of you get this? Not many, ok, please ask

me doubts if you do not, there is nothing very.

Student: Why is it W transpose?

Why is it W transpose? Because otherwise.

Student: (Refer Time: 08:52) Claim that.

How can you claim that that would work? Because you have no linearity’s in between

right no W inverse would not work, what is the simplest thing to do? Why would you

want to compute an inverse? That is an interesting question how would you implement

this? How would you, if there are multiple paths from a weight to the output, how do you

compute the gradient? Sum it across all those paths, what is happening here? How many

paths to there exist from the weight to the output? One is this direct path and then the

other is another this path also. So, you just sum it across these 2 paths. Do you get that?

How many of you do not get that? How many of you do not get that.

So, if this was W star you did not have a problem? You could just have computed dou l

by dou W star and dou l by dou W. Now think of it as this, right that you have this, this is

one path W, W to the output, ok. And now the gradient is just going to be sum across

these 2 parts, one path is the single path and the other path is the double path. So, it is

just going to be a sum across these 2 paths, oh, no, no. So, you just have one matrix W

which are going to update. You do not have 2 matrices, you just have one matrix W, at 1

place you are using W, the other place you are using W transpose. But just look at it

element wise right, do not try to look at it in the terms of matrices.

So, you have n cross k elements here w 1 1 to W n k, you have to computing the partial

derivative with respect to each of these, and every time they are considering all possible

paths to the output, and that value is getting updated, right? And at 1 place you are using

a  particular  arrangement  of  these  W’s  at  the  other  place  you  are  using  a  different

arrangement of those W’s, that so, it will just remain the same? Is that ok?



Student: No.

No, this is for regularization, right. So, we are reducing the number of parameters by

half.

Student: (Refer Time: 10:51).

Yes.

Student: (Refer Time: 10:52).

No,  that  I  mean  that  also  has,  but  that  is  not  the  objective,  we  are  trying  to  do

regularization.  How many of you have lost  at  this  point?  Please ask me if  you have

questions, really I do not mind answering. But if you just give me blank spaces, I cannot

read them. So, this is used at quite a few places where you tie some weights right so that;

so, effectively you are saying that learn it in such a way that it works at both the places.

And you are reducing the number of parameters. So, weight tying is something which is

very commonly used for regularization in the context of neural networks.

So, that is where we will end the motivation part, and it is too very simple ways of doing

regularization. One is the standard known trick which is to use l-2 regularization, and the

other one was something special that we saw which was tying the weights you all have a

lot of doubts about tying the weights. Do not let that affect the rest of the lecture just

throw it away. It is if you do not understand it. May be go back and think about it and

then we discuss again if you want, ok.

So, do not, it is a very small thing, do not let it affect your rest of the lecture.


