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So, we spoke about bias and variance and we saw that simple models have a high bias,

but low variance and complex models have a low bias high variance and so on. And we

saw it some illustrative examples that what that is what that means.
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Then, the important thing to note was these two formal definitions of bias.
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The formal definition of variance which you all know anyways, and then the important

concept that we spoke about was the strain error versus test error.
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So, this was the curve that we were interested in and one corner of this curve was related

to high bias low variance. And the other corner was related to low bias high variance,

right.
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So,  we were looking for  something in the middle.  That  is  what  our  quest  is  in  this

lecture, right and we want to find ways of falling somewhere in middle.
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This led to the definition of two quantities of interest or training error and test errors. So,

training error is computed from the training points. These are the points that you actually

look at while you are solving this optimization problem. So, the training always involves

solving an optimization problem which is the objective that you want to optimize or

maximize and the test error is something that you want to use it for at eventually.

So, you all have these two quantities of interest that we design and we realize that the

training error is more optimistic whether the test errors actually gives us the real picture

of what we do and we tied those back to things that you have done previously in the

machine learning; or other courses that we always split the data into training valid and

test train it on the training data, do some validations on the validation data, but never

look at the test data. That is for the final evaluation.

So, this is this intuition which I have been trying to build with these two curves is the

explanation for why we do things that we.



(Refer Slide Time: 02:03)

Now, we are interested in doing a more mathematical, mathematically rigorous analysis

of this intuition, right. So, that is where we left off. So,  what we are interested in? So,

now I will just start from this point is that we are given some data which is m n m

training points. And end testing points and we know that there is a true function between

the outputs and the inputs, and we are also expecting or accepting some noise in this

relation just as in any other relation which means that y is related to x i, but by some true

function. But there is also this noise and for simplicity we assumed as this noise comes

from a normal distribution with zero mean and some small variance and as usual we

never know f. But we are trying to approximate this f hat, and we come up with some

parametric form for f hat and then, try to learn the parameters of f hat from the training

subset of the data that is given to us.

So, this is what we always do and we have already seen different variations of f hat. One

of them being the deep neural network and what we are actually interested in is this

quantity, the expected difference or square difference between the predictions made by

our model and the true value of the output with respect to the true function weight. Then,

we asked I asked you whether we can actually estimate this quantity and all of you said

no. Why? It is because you do not know what f of x is, right. So, we will see how to

estimate this empirically.
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So, then we started off with this  information that we have we know what y i  hat is

because that is the prediction that we make and we know y i. What y is, we do not know

the function, but we see the output of the function in the form of the training data points

given to us or any data points given to us.

So, we wrote this by making this particular substitution where we notice that y that we

see is actually the true function plus some noise and then, we did some trickery and try to

simplify this. And then, we just realize that this is the term that we are interested in. So,

we moved it to the other side of the equation and came up with this meet left hand side or

neat right hand side that we need to analyze now. So far everything is clear.

This is where we ended the last class, right. You just went to it very quickly, but I assume

everything is clear at this point, fine. So, we are left with a bunch of expectations, right

and I am assuming we have no clue how to estimate this. Remember that when you are

dealing with expectations as always this true expectation and then, there is this empirical

estimation. So, what we are going to move towards? So, these all equations when I write

E here, capital E here, I am talking about the true expectation.

Now, we will see how to approximate the true expectation with an empirical expectation

and then, based on that we will make some observations.
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So, that is what we will do?
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Now, so we will just take a small d 2 and I will just tell you what expectations are or

what empirically expectation is, how to compute them. So, suppose we have observed

the goals code in k matches. There is some k football matches that we have seen and we

have seen that the goals code were the following.

Now, if I asked q what is the expected value of the goal? Now, the number of goals for

what will you do; take the average of this. This is what you will do. So, what is it that



you are  doing  here?  You  are  taking  a  dash estimate  of  the  expectation,  empirical

estimate. You are making some observations. These are the observations given to you,

these are the k matches. Watch as much, as many football matches as you want after the

semester ends and then, notice the number of goals that were scored in them and then,

you  can  compute this  expectation,  and this  is  how you  do  empirically.  So,  there  is

something that we do on a regular basis, but I just want you to realize that what you are

doing is actually an implicit estimate of the true expectation. Is that fine?

Now, can you relate this to the quantity that we are interested in? We are interested in

computing a certain expectation which is this. Can you take an analogy and tell me how

you would do this? The hint is we have done this a million times in the course already,

fine. So,  this is how we will do it and have actually done this a million times in the

course. So, when you compute this, we are actually doing an empirical estimate of the

data.

So, let us just take a minute to understand this. We are given some data, we are interested

in this  to expectation which we cannot  compute.  So,  we will  take this data,  we will

assume there is enough of this. We are given m samples which are enough and from that

we will make an empirical estimate and just as in the case of these old score, right. As

you see more and more matches,  you will  have a better understanding of how many

goals can be scored when two particular teams are playing. In the same analogy holzer as

you see more and more data, your estimate would become better, but that is how you will

do the estimation, ok.

So, now we will come back to, so now do not get surprised when I am going to replace

all these es by this all the es that we had in our original equation. I am going to replace

them by these summations, fine.
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So, this was our original equation that we had derived and we were interested in this left

hand side quantity which is a sum of some terms on the right hand side. So, now this

expectation I told you that we can estimate it from data, but which data? Training data or

test data, both. So, we will try to estimate it from both and see if there is any difference

which arises when you estimate it from one data and the other data.

So, the first thing that I am going to do is, I am going to use test observations to estimate

this. So, can you tell me what are my summations going to look like? It is summation

over n plus 1 to n plus m. We assume that the first endpoints are training points and the

remaining points are test points.

So, the quantity on the left hand side is true error. Remember that because that has f x

which we do not know quantity on the right side, the first thing is empirical estimation of

the error, ok. The second thing is a small constant. However, the epsilon i square and we

assume that comes from a normal distribution with a small variance. What is the third

quantity? Actually I have given you the answer already, but I want you to think about it. I

am saying it is the co variance between two things.

When I say it is the co variance between two things, what is the first thing that I need to

prove is that the two things are dash random variables. I mean first thing we need to see

is that the two things are random variables epsilon is clear. It is a random variable.



What about this other thing or rather epsilon is a random variable what about the other

thing  and  depending on  the  training  instance  that  you  have sampled,  this  ongoing

difference is going to differ. You are having your training or test instance whatever is this

x i this is going to differ because these xs are different. They are all random variables.

So, there is difference between these two quantities also going to be a random variable.

Is that fine, but still is this true.

So, then I have told you this is x and this is y and what I am saying is that the co variance

between x and y is just e of x x into y. Is that correct?
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That is how you define co variance. What is the definition of co variance; if you have

bothered to look at the prerequisites, no expectation in the form of e. So, co variance is e

of x minus mu of x into y minus mu of phi, what is our x epsilon and what is our y. What

is mu of x 0?

So, I will just simplify this a bit. I will open up the product. What is mu of y into e of x?

What is e of x? What is the expected value of the noise 0?



(Refer Slide Time: 10:01)

So, then this turns out to be as that.  Is that fine? That is why we are writing the co

variance is just the product of the two things. Is it fine?

So, let us just take a minute to again understand this. The true error is the empirical

estimation of the error plus I mean plus or minus a small constant, and then, this nasty

quantity that we do not know what to do with it. So, let us look at this quantity and see

what we can say about it.

(Refer Slide Time: 10:30)



Now, what is the co variance between these two? I am trying to compute this expectation

from the test data. Just remember that. So,  each i here is a test instance are these two

random variables dependent or independent is the question that I am trying to ask. It is

independent. So, let us look at it piece wise. So, remember that we had said that y is

equal to f of x i plus epsilon i. This epsilon I had no relation to f of x i. I mean I could

choose any x i, but this noise is going to be random. So, there is no relation between

these two.

Now, is there a relation between f hat of x i and epsilon i? We are doing tests. So, how

did we come up with f hat of x i? How did when I say how did we come up with f hat is i

mean? How did we learn the parameters of a fact using the training data and what are we

computing expectation with respect to now tested on these? Did these epsilon improve,

influence the parameters that we had learned further from the training data? No, since

there is no dependence between these two guys.

So, that is why epsilon i is independent of the other random variable that you see in this

expectation. Is that clear? Do you get the intuition f hat x i further? No, but this is the

mean.  This  noise is  what is  present  in  the test  data  and you have not  seen this  add

training time. When you are training the parameters, you did not look at this noise. You

are looking at the noise in the training data.

So, this is not participated in the estimation of the parameters of f hat, but that was for

the training data right, but this now I am doing the expectation from a test data.
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So, these two random variables are independent. That means, I can write this as is this

fine. What will happen to this 0? So, what did we eventually conclude that the true error

is equal to empirical test error plus a small constant?

So, what does this tell you? Now, tell me forget the math. Tell me in English, right. What

does this take? What does this mean? Can you relate it to; now why you do this training

error, validation error, test error? So, what does this tell me? This tells me that if I have

trained a model and now if I take an estimate of the error on some data which I had not

used for the training, then that error which I see is actually very close to the true error. It

only differs by this small constant.

How many forget that? That is why when I look at the validation error, it is not being

overly optimistic. It is giving me a true picture of what the actual error is, right. So, there

are two things that you need to understand here. One, this is the quantity that we are

interested in which we cannot estimate. We are trying to estimate it by using this; we are

trying to make an approximation. So, we are trying to see how good this approximation

is. What this derivation is telling us is that if you are approximated it using the test error

or the test data, then this approximation is actually very close to the true error and how

close it is actually? It just differs by this small constant.

So, you get the importance of what we are seeing here right. Now, to truly appreciate this

I need to tell you what would have happened if you had used the training data for this



estimation, right. It is largely dependent, but that is again a normal assumption that you

make. So, this is ok. Good that you asked at this point. I will be doing a couple of things

today  where  we  will  be deriving  some  things.  We will  try  to prove  some  things

mathematically, but all of these would have underlying some assumptions.

So, if you remember the atom derivation with this we did there, also we had made this

funny assumption that the gradients are actually coming from a stationary distribution

which will not happen in practice. So, this reminds me of this joke from Big Bang theory.

If it says that I have a solution, but it only works for squared eggs in a vacuum, right. So,

it is basically all these things always have some assumptions underlying them. But the

idea is to kind of ignore those assumptions and see what happens in a neat setting and at

least see whether in a neat setting everything works fine or not.

So, that is what is happening here. So, is a valid point that you are assuming that the

noise comes from a zero mean distribution. Now, if the noise did not come from a zero

mean distribution, then this would have not gone down to zero and the mean would have

been higher than this is no longer a small constant and so on. So, those things are there.

So, this is going to happen in some of the other derivations that I do. Today it is not that I

am teaching you something wrong. It is just that you have to take it with a pinch of salt

in the sense that these assumptions are there and the original derivations these are not my

assumptions. And they work only under those assumptions.

So, you have to be careful about that, but the idea is that still with these assumptions, can

we at least make something meaningful out of it. Is that fine with everyone? Can we all

work with that basic premise? So, what I have done so far is told you that if you are

estimating the errors from the validation data, you are doing a good job.
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Now, let us see if I would estimate the error from the training data. Take a guess what

would happen? What would my argument for this be? Now, this will not disappear, right

because  these  two are  not  independent.  Now, I  cannot  write it  as  a  product  of  two

expectations. That means, it will not go down to 0, fine. So, that is the argument which I

am going to make.

So,  hence actually the true error if you see, it is equal to the empirical estimation plus

some quantity. That means the true error is  dash as compared to the empirical.  That

means the empirical error that we see is pessimistic or optimistic? Optimistic:  that is

what I started with that. You gave a very optimistic estimation of your error if you are

looking at this empirical estimation from the training data because you have ignored this

quantity. Is it fine? So, what is missing in the story?

Let us see now what was this quantity. So far all our discussions LT term right, but now

suddenly I have realized that my true error is actually L theta plus something else. You

see where I am headed with this. So,  that is what we need to see now. Now think it

would be we should, but I am pretty sure it is positive. I cannot work it out.

Now, I am pretty sure it is positive and you can see and if you find it is not then let me

know.
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So, how is all this related to model complexity? We started off with this idea that model

complexity tells you how much is the bias, how much is the variance and because of that

you get these two curves that you are not happy with. One curve being very optimistic

and the other curve being a bit  pessimistic.  Now, how does this  discussion tie up to

model complexity?


