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So, let us start with l 2 regularization. So, I have seen this before.
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So, all of you see that this is l 2 regularization right. What does l 2 regularization does?

Now tell me in the context of things that we have discussed today what is this? Empirical

estimate of the train error and what is this. Is that fine right? So, everything that we are

going to write is l, because of its w, but fine right ok. Now why does this relate to model

complexity, what am I doing here actually by adding this?

So, they are going to see a very detailed analysis of this, but I just want to see first

whether you get an intuition behind this. So, by doing that what you are trying to do? Not

allow the model to become very complex right. You do not want a model where your

weights can take any possible value; you just want the weights to be small. So, you are

reducing the freedom on the model right, less freedom less complex, you get the intuition

at least. We will see this in more detail, but at least you get the intuition why we are

doing this.

So, we are using omega. Remember that we are using this omega theta as a surrogate for

model  complexity. So,  if  you add something in  all  omega theta,  just  make sure you

understand that this relates to model complexity ok fine. And now for s g d what would I

need, for gradient descent. Just in case you have forgotten what gds, what do we need?

Nothing,  you  have  done,  it  will  give  you  gradient  of  this,  which  is  a  sum  of  the

derivatives of the two quantities of which you know one right. You know this already,

and what is the other guy; alpha w ok.
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So, you see this l 2 regularization right one reason why it is preferred is now imagine you

have already written code for gradient descent. All you need to do is change it at one

place add this to your update rule; that is all you need and you can think of the vector

form of this, where you have a vector of parameters, you can think of the matrix form of

this variable vector matrix of parameters. All you need to do is add one term to your

update rule, so it can be done with very minimalistic change and this would be your

update rule. Now let us see geometric interpretation of this.

(Refer Slide Time: 02:36)

Now, from here onwards some of you will start getting a bit uncomfortable with some of

the math, because of these assumptions that it only works for squared eggs in a vacuum

right.  So,  you will  see  those  kind  of  things,  I  will  not  tell  you upfront  what  is  the

assumption I am making, because that will just spoil the analysis, you will just not enjoy

it  as  much as  you would ignorance  is  bliss  right.  So,  if  you do not  know what  the

assumptions are, you will probably enjoy it more.

But for some of you will pick it up, just keep it to yourself, at the end I will tell you what

are the assumptions I had made ok. There are some tricky assumptions that I want to

make, but just live with it and just try to enjoy it while those assumptions last right ok.

So, now, let us assume that w star is the optimal solution for L w, what is L w? The train

error, not our regularized error, just the train error ok.



And, so if w star is the optimal solution what can you take tell about the derivative with

respect to w star or derivative at w star sorry, it is going to be 0 from basic calculus right.

So, which I say minimize x square, the minima is where derivative of x squared with

respect to x is equal to 0 right, everyone knows this ok.

So, now consider one point which is ok. So, what I actually want to consider is that, let

me just see how to see this. So, let us see my w star and I want to consider some point in

the neighborhood of w star ok; that is what I want do. So, one way of saying it is that h is

equal to w minus w star, is that fine ok. So, that is what I am going to use in the next few

steps.
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So, suppose I have such an h which is equal to w minus w star; that means, I can move

from w star to some point in its neighborhood by using h. And what does Taylor series

tell  us? This is what Taylor series tells us right, that the value of the function at this

neighborhood point is equal to this. All of you know Taylor series well now, it is that fine

I do not need to really go over this right everyone is with.

This is approximation up to the second term second order derivative. Now what was h

actually w minus w star. So, I will just substitute that and this is what I get, is that fine.

What is this quantity? 1 minus 0 infinity minus infinity 0 right we just did that ok. So,

that term will disappear, what am I left with? This quantity and I have forgotten what is

next ok.



Now again I am interested in the derivative of this ok. So, what will happen if I take the

derivative what would I get? I am interested in computing grad L w, what will the R H S

be, how many of you fine with this? Remember this is a quadratic form right. So, this is

of the form x square that is, I mean that is roughly how I remember it is not correct,

because of the form x square.  So, when you take the derivative one of the x is will

disappear and this quantity will remain ok. So, everyone gets this ok.

So, now what do I have is, I have the formula for the gradient with respect to L w and it

is in terms of the gradient with respect to or rather the gradient at L w star; that is what I

have achieved. So, far, but what am I actually interested in, the regularized loss, I am,

what  I  am still  dealing  with,  is  the  non  regularized  loss.  This  is  just  the  empirical

estimate of the training error that is not what I am interested in, I am interested in the

regularized loss.

How many of you lost at this point? Oh h is the second order derivative oh. So, these are

brackets just for clarity, but I see it is making it more unclear yeah, actually we should

have used u and then call it u transpose H u. So, it is the brackets here are not indicating

function this is just h transpose H. Now let us say it I realize how bad it is. So, last step

what are we taking gradients with respect to is w right, is it fine.

So, we have a. So, I mean do not get too confused right. So, up till this point we have a

formula for L w right, and I am just interested in the derivative of that ok. And all I have

achieved by this is that, I have ok. In fact, I have one more step right.
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What is this quantity zero ok. So, we now know that the derivative of the loss function

with respect to w can be written as this quantity. Is it ok, and I have just derived it step

by step, there is nothing great about it, anyone is can. Why I am doing this is not clear

that will become clear hopefully, but what I am doing is clear right, is that fine can I

move i.

Now what we are actually interested in is this quantity, because this is the true loss that

we are going to deal with right and we just saw in the previous slide that this quantity

which is on the L H S is equal to this thing on the R H S, this is what we saw on the

previous slide, can I just go back to the previous slide, because the derivative of this was

just alpha w. Now let us start with this. So, on the next slide, let me just see if there is

anything else that I need to see here ok.

So, far everyone is clear what I have derived so far why is not clear, but what is clear,

what is being derived so far. So, I have said that the derivative of the loss function or the

regular is loss function can be written as this quantity ok, is that fine, where w star is the

optimal solution for with respect to the un regularized loss function ok. And now I have

what I am interested in this solution with respect to the regularized loss function ok.
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Now, let w tilde be that solution for the regularized loss function. So; that means, the

derivative of the loss, the regularized loss function at w tilde is going to be 0, nothing

great about this, but I just told you on the previous slide that I can write this quantity as

this quantity that is what we derived on the previous slide ok. Just take my word that is

what we derived on the previous slide ok, let just, no confidence in me ok that is fine.

Now can you. Are you if I write it as this, just rearranging some terms oh sorry.

So, I am just grouping all the w tilde some terms and this is, a matrix is needed here

right, because I need to, I can only add two matrices. So, what I am just doing is, putting

the elements across the diagonal. Everyone understands this, everyone gets this step.
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So, now I have a formula for w tilde in terms of w star ok. I am going to go a bit further

and be a bit bold and compute the inverse also. So, now, I have a exact formula for w

tilde in terms of w star. So, what is this, actually what is this relation that I am trying to

establish? Suppose I know the solution with respect to the un regularized loss, and now I

have added regularization what happens to the new solution.

So, I am telling you the new solution would be smaller weights and so on that is what L

do regularization tells you, now you are just trying to make an interpretation for that. So,

I have given you a closed form solution that w tilde is actually equal to this quantity that

you see on the right hand side ok. Why you are doing this is still not clear but right now I

just focus on the what part of it this is just some mathematical steps that I am doing,

anyone who is not comfortable with this.

Now notice what would happen if alpha tends to 0 what would be w tilde be w star, what

do you mean by alpha equal to 0, no regularization right. So, that is just one corner case

that I want to do, but that is not what we care about anything what that is stupid to do all

this and tell you that if you do not use regularization you will get the same solution, but

that is not what I am going to tell you right. We are interested in the case when alpha is

not equal to 0 ok. So, let us look at that case.
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Now, I am going to assume that H is a symmetric positive semi definite matrix squared

egg in a vacuum ok. So, if that is the case then I can write H as this, I have just done the

dash of H, eigenvalue decomposition all right ok, and I know that since it is a squared

symmetric matrix the eigenvalues are going to be eigenvalues are going to be orthogonal

yes, eigenvalue vectors are going to be orthogonal and that is why I can write this that

cute suppose as the inverse of Q ok.

Now, let us start with whatever we had on the previous slide and substitute what, what I

am going to substitute? Instead of H I am going to use Q lambda Q transpose ok. So, I

am doing that. So, is that ok, I will just go over the steps and let me know at any point if

you have a problem. What I have done is, I have replaced this I by this and its valid,

because Q Q transpose is just equal to I, I have just taken q and q transpose as common

right. So, this is a c b plus some a z b. So, I have taken a and b out right, is that fine ok.

Now, what is the next thing I am going to do? This is of the form a b c inverse. So, I am

going to write it as, and the inverses are neat right ok.
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This is fine, what will happen to this quantity I, what is this quantity Q and this is what I

am left with, but there is still something more I can do I guess let us see ok. So, I can

write this entire thing as a diagonal matrix. How many of you see that it is a diagonal

matrix,  because  lambda  is  a  diagonal  matrix,  I  of  course,  is  a  diagonal  matrix,  I  is

multiplied by a scalar which is also going to be a diagonal matrix and the whole thing is

again multiplied by some diagonal matrix ok. What is the inverse of a diagonal matrix?

The reciprocal of the diagonal elements.

So, I, its fine. So, I have a very neat formula for what w tilde looks like in terms of w star

ok. Again why am I doing all  this  and God knows, but  and here D is  equal  to this

quantity ok.
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So what exactly is happening here, in terms of linear algebra or in terms of geometric

interpretations ok. So, let  me just see if I have to do something first ok. So, what is

happening to w star is getting

Student: (Refer Time: 13:15).

Rotated, remember what happens when a matrix where hits a vector, it gets rotated and

scaled  also.  And then what  is  this  diagonal  matrix  going to  do,  scale  it,  element  by

scaling actually, everyone gets this operation and then I am again rotating it by Q ok.

Again the same stupid question if alpha is equal to 0 what would happen? Q transpose

what rotated by something and then Q would rotate it back way; that means, you will end

up getting the same solution ok. If alpha is equal to 0 we understand.

Now if alpha is not equal to 0. First let us see what does this matrix look like ok. So,

what is this matrix actually, it is a diagonal matrix, what are the diagonal elements, the.

What is the first element in the diagonal? 1 by, everyone agrees with this, what is the

second element fine, and what is the other matrix that I have? Lambda. So, D is equal to

the product of these two things right. So, what is D going to be? What is the first element

of this matrix is going to be, how many if you say lambda 1 by 1 lambda 1 plus alpha,

this much is clear, everyone gets this ok.



So, this is a diagonal matrix of the form a b c, let us consider a 3 by 3 matrix ok. Now I

am going to multiply it by another matrix x y is z which is also a diagonal matrix right,

because this is also it. So, this matrix I have already told you what it looks like, the other

matrix is also a diagonal matrix. Now what is this product actually a x, b y, c z and

everything else has 0. Now everyone gets it. now can you say what would this product

look like if you can actually make out, it would be a diagonal matrix and what would the

diagonal elements be? Is it fine with everyone now ok, is it ok, fine.
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So, now what is happening? So, first this rotation is happening that no one is denying,

after rotating what is happening, this is a, this product is actually a vector; that is fine ok.

What are we doing to every element of the vector, scaling it, scaling it by what quantity

these quantities that every element is getting scaled by the corresponding entry in the

diagonal, in this diagonal right.

So, the first entry is getting scaled by this, the second entry is getting scaled by this and

so on ok. I just want you to take some 30 seconds and try to figure out where I am

headed from here.
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Let us see if I can, yeah maybe look at this sentence and see. First of all everyone agrees

with this sentence right. Is there anyone who does not agree with the sentence? I am just

trying you to figure out the implication of the sentence,  you get it,  some people are

nodding their heads just in, because if you scale it right, then there is no guarantee that

what the vector has changed ok, what happens in the following case; that means, that

dimension will be left as it is ok, but if the eigen, if this condition holds what would

happen that dimension is almost getting multiplied by a 0 right.

So, see these two extremes, when the eigen value is very large you will end up staying

where you were, so those dimensions will not be affected. If the eigen value is very small

then you are almost getting scaled down to 0. So, now, what will happen is actually, only

the significant directions larger eigen values will be retained. So, what is the effective

number of parameters in your model now?

See remember that this w vector is a vector of all the parameters, what am I telling you

that some of these are going to disappear, when which condition holds, the third can, the

third bullet holds, some of these are going to disappear. That means, the effective number

of parameters, which remain in your model is going to be less right and you see that it is

going to be given by this quantity right.

So, that is sometimes known as the effective number of parameters in a neural network.

If the effective number of parameters in your needle network is decreasing; that means,



what you are doing, making the model less complex right.  So, that is what we have

achieved, you see that ok.

(Refer Slide Time: 17:50)

Now, let me end with a pictorial interpretation of this. You see two figures here and there

is only one figure, but you see two different things here. Can you tell me what this is and

what this is, that is the first question I want to ask you. The hint is that in this lecture we

care about, the other hint is what was w star, the solution for the.

Student: (Refer Time: 18:23).

Unregulated loss which means which loss L theta, you need any more hints. Sorry, this

box is the contours of L theta, this box contours of omega theta. So, this thing just ignore

this part of the figure for now ok. This I have marked as w star, w star was the solution

when I only had the un regularized loss ok. There is the solution when I had the un

regularized loss ok.

So,  remember  the  contour  maps  that  we had seen.  So,  this  is  the  minimum of  that

particular  function.  So,  this  is  the contour  map for  L theta;  that  is  clear. Now what

probably is not clear is, why is this the contour map of omega theta, let me just go ahead

actually.
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Please do not read this, this is the prestige ok. So, do not read that. So, this is the contour

map of omega theta right, because omega theta in the, what is the minima for the omega

theta, it is a function of the form w square, what is the minima? 0 and what does that

function look like and what is this point, 0 the origin right. So, that is why this is the

contour for omega theta ok.

Now, what is happening? This was the solution when you had without regularization and

now this  is  w tilde  which is  a  solution  with regularization.  So, can you make some

commentary on this, with respect to not just general commentary, with respect to the

things  that  we  saw  in  the  derivation.  We talked  about  rotation,  scaling,  dimension

specific scaling, so what is happening? This was my original solution vector; this was my

original  solution  vector  when I  did  not  have  the  regularization  term,  now what  has

happened?  The  rotation  has  happened  and we saw that  there  is  a  rotation  operation

happening, more importantly what has happened? Scaling has happened.

More importantly what has happened dimension specific scaling is happening right. One

dimension has not, this dimension has scaled down this dimension has not scaled down

enough; that is exactly what we wanted right. We wanted the less important weights to

go down and the  more important  weights  to  stay there.  We did  not  want  a  uniform

scaling down; we wanted a dimension specific scaling down.



So, the weight vector has been rotated yes, each dimension after rotation has been scaled,

some dimensions have been scaled down more, the other dimensions have been scaled

down less, how many of you can make this interpretation from the figure, now that I

have told you this interpretation.
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Now, still if you do not how mean if you can still have a doubt with this, you still have a

doubt what is doubt fine so, ok. So, this was the original solution vector right. The map

told us that what actually happens is when you add this omega theta the solution vector

gets rotated ok, at the same time there is also some scaling down and that scaling down is

for dimension.

How  many  dimensions  do  you  have  here?  Two  dimensions  right.  So,  this  is  one

dimension,  this  is  the other  dimension.  Now in the  original  case  both these weights

actually seemed almost equal right. I mean if you look at the w 1 coordinate and the w 2

coordinate they were same. Now after this regularization what has happened is, what are

the new coordinates for w 1 and w 2, this is the coordinate for w 1 right, this is the value

of w 1 and this is the value for w 2.

Both of them are admittedly smaller than the original values for w 1 and w 2 in the

absence  of  regularization  or  both  of  them equally  smaller. No they are  being  scaled

differently, one rate has been scaled down more, the other weight has been scaled down

lesser  right  and that  is  exactly  what  the  math was telling  us  that  they get  scaled  in



proportion to those lambda 1 by lambda 1 plus alpha and that is exactly what we see in

the figure is that fine.

How many if you get this interpretation now is that ok. So, all of its elements are shrink

oh. You have a question. So, this final resultant right it is. So, what would have happened

is that there would have been first rotation then scaling down and then again rotation. So,

what you are seeing here is the final rotation right. So, it  is not, it  should have been

showed in three steps by just shown the final step, is that ok.

So, its question was that we first had a rotation, then had a scaling and then again a

rotation,  but I even as explained in the figure I spoke only about one rotation.  So, I

basically  clubbed both the rotations,  and so what  you see finally  is  rotations  scaling

down and again rotation, is that fine.


