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So, in this module we will look at dropout now.
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So,  the  intuition  that  we  have  developed  in  the  previous  module  which  was  about

ensemble methods, is what that is that ensemble makes sense in most cases. Because,

you  do not  expect  the  errors  of  these  k  models  that,  you are  using  to  be  perfectly

correlated. And we saw that, whenever they are not perfectly correlated you are going to

get some advantage.

Now, how do you do this in the context of neural networks? So remember, what was

bagging multiple instances of the same network trained on different subsets of the data?

What is the problem with this in the context of neural networks? Each of these neural

networks is very complex training, each of these is going to take time and I going to train

k of them is that, fine right.

So you decide ok. Sorry, so, one option that you have is you train aeveral different neural

networks having different architectures right, but this is going to be expensive because,

you have  to  train  k of  them.  The other  option  that  you have is,  you train  the  same

network, but on different subsets of the data this is also going to be expensive.

So, whatever on sampling techniques you can think, if in the think of in the context of

neural networks which are essentially. These 2 techniques different architectures and take

an ensemble or train the same architecture on different subsets of the data both of them

are going to be expensive right.

So now how do you go about it? And it is not just training time, expensive it even if we

manage to train it at test time again. When you are given a test instance you have to pass

it through all of these complex neural networks, each of which is going to take some

computation, and then take the ensemble of the outputs right. So, even at test time it is

expensive it is not just that, that training time it is expense ok.
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So now, dropout is a technique which addresses both these issues, which issues? Train

time computation as well  as test  time,  computation.  So, it  effectively allows training

several neural network architectures without any significant computational overhead. So,

we will see how that works and it just not training time as I said it also allows us to do

this quickly at test time.

(Refer Slide Time: 02:21)

So again let us see, so again here ok. I will get to it when I know. So, drop out actually

refers to dropping out units from the neural network ok.



So, this is my original neural network and I am just talking about one neural network,

forget about ensembles just one neural network is what I have. Now what dropout says

this.  You  dropout  some  units  from  this  neural  network;  that  means,  dropout  some

neurons and when I dropout some neurons, I am also going to drop out the incoming and

the outgoing edges. Otherwise, where are they headed right, so I am just dropping out.

So basically, what is effectively happening here? I am getting a new network architecture

right. At least that is clear that is what dropout effectively does, but I have already made

a case that I do not want so many architectures. That because, it is a headed to train all of

them and again a test time I have to pass it through all of them right.

So, I need to still fill that gap, but drop out says that, drop some units and you will get a

new architecture. But how does that simplify life, we will see that. And now each node is

actually retained with a fixed probability for the hidden nodes and even further input

nodes.

So, then we were not wrong in actually dropping out the visible node. Because, you can

do dropout at the visible nodes also ok. Anyways yeah so for, the hidden units you would

drop them with a probability 50 percent and the input units you will drop them with a

probability of 20 percent typically it again is some hyper parameter that you will have to

tune, but typically this is what you will do and I hope you see that dropping nodes from

the hidden unit. From the input unit is same as corrupting the input data right it is same

as adding noise to the input data is that fine ok.
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So this is the idea, now let us see how to actually implement this idea. So, suppose a

neural network has n nodes using the dropout idea each node can be retained or dropped,

an example in the above case I have dropped some 5 nodes to get a thinned network.

So, if there are n nodes what are the total number of thin networks that I can get from it?

And so; that means, I can get 2 raise to n different neural networks. Am I happy about

this, or sad about this? Sad, there is just too many neural networks. How can I train them

actually right?

So how do I do this? I am just creating a lot of suspense without giving you the answer

ok. So, first trick is, share the weights across all these networks ok. We will see what;

that means, and the second trick is sample a different network for each training instance

ok. None of which is clear at this point, I can see I can read your faces I am good at it ok.

So, let us see how to do that.
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So, we initialize all the parameters of the network randomly or whatever may be used

and start training. When I start training, I will pick up the first training instance or the

mini batch or whatever I am doing we apply dropout resulting in this network ok.

What  will  I do and they forward prop carlo,  forward propagation right  ok.  Now, we

compute the loss and back propagate how? Some weights are missing rate how do I do

back propagation now. I have deliberately dropped up some of these connections, they

did  not  participate  in  the  forward  propagation.  This  back  propagate,  which  are  the

parameters which will update now? Only the ones which actually participated right.

So, I will just do back propagation. Just look at the red arrows, I will just do it over the

paths which are actually present in my network fair enough right. That is what you meant

by normally ok, that is normal ok. So, I will just do it over the weights which actually

participated that is fair enough that is the only thing you could; obviously, do.
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Now, I take the second instance, again I apply dropout and quite naturally I will get a

different thinned network as you see the figure 3 in this slide ok. What would I will do

now?

Student: Forward propagation.

Forward propagation, then compute the loss [FL] back propagate to compute the loss ok,

and then.

Student: Back propagate.

Back propagate again back propagate only to the.

Student: Active nodes.

Active nodes, so these other nodes which will get activated ok. So, what is happening

here, is now trying to relate it to what we were doing in bagging right; where we are

trying to train these different networks on different subsets of the training data right. Do

you see something similar happening here? There are many such thinned networks; each

time I am sampling a different network and updating it right.

So, it is equivalent to training these large number of networks on different subsets of the

data right,  but then the problem is  that  some of these networks may never even get



sampled. There are 2 raised to n of those, my amount of data is definitely to be less than

2 raised to n.

So, some of these networks might just not even get sampled. Then, what is happening?

Or they would get sampled very rarely right. For example, what is the probability that

again? I will end up with the same network we are computing it ok. Good, it is very less

ok, I am fine with that at 730 right.

So, it is a very less right. So, it is quite likely that this network will never be sampled

again; that means, for that network the parameters are getting updated very few times,

am I fine with it.  Yes, I am. Why? Because the same weights will  get updated for a

different network; I am just using the same weight matrix throughout remember that, my

W matrix or W 1, W 2 is the same throughout.

It  is  just  that  at  different  depth  subsets  different  instances;  I  am just  touching some

portions of this W 1 and I am not touching the other portions of W 1. So now, what

would happen, so I have shown you 2 training instances right. What would happen to the

weights which were active for the first training instance as well as, the second training

instance? It will get updated twice and which are active only once?

Student: (Refer Time: 07:59). 

Only once right. So, over a period of time many of these weights are shared across all

these  networks  that,  I  am  sampling  right.  So,  even  though  a  particular  network  is

sampled  only  a  few times,  its  weights  will  get  updated  many  times  via  these  other

networks which are similar to it. Do you get that, how many of you get this? Ok; good,

so what is happening, I will just repeat that I have just one weight matrix. I am sampling

a thinned out network which only uses some of these weights.

So for that training instance, I will update those weights. Now, I know that the likelihood

of  the  same network  getting  sampled  again  is  very  less,  but  I  do  not  care  about  it

because, I could sample a different network, but I am sure that some of these weights

will again repeat in that right. And in that, I told they will get updated. So, even though

each of these networks is seemingly getting very few updates. Overall, all the weights

shared by these networks are getting updated as much as they should be is it fine?



 Everyone gets this idea? Ok, fine and while I am also taking care that, similar things like

early stopping or weight regularization l  2 regularization where, I am not allowing a

single weight to continuously grow or something. Otherwise because, these weights will

be off for some networks. Is that fine? You see the connection between early stopping, l 2

regularization and this is that ok?
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And so, each thinned network gets trained rarely or sometimes even never, but I am not

worried about it. Because, it is weights will get updated through some of these other thin

networks.
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 This is all finite training time. At training time what is happening is this is one of these

blue guys introduce on with the probability p; that means, the weights going out of it,

who are available with a probability p right and other times they were not available.

Now, what do I do, it test time? I cannot let me finish this ok. I cannot take an ensemble

of d ok, the answer would have been that, at test time instantiate all these 2 raised to n

networks pass the training passed the test example, through all of them and then take an

ensemble right, but of course, that is probabilitivally expensive. So, what will I do at test

time? What is the simple trick that I will do? So, he says that just use this network.

And just use the final mate matrix, that you had no, but then you have guessing out of the

2 raised in the sample, some small number of those and do it. Actually, dropout uses

something very simple than this. What it says is, that each of my nodes was present only

p fraction of the times in the training data ok; that means, one way of looking at it is that.

So,  imagine  that  you  could  think  of  this  as  the  analogy  is  that  all  these  nodes  are

participating in a discussion right where they trying to see how to do this job properly,

but with probability p they all sleep off right. 

So, at the end of the meeting, you will trust each of them only with probability p. So, that

is the simple trick with dropout uses; it says that just scale their weights by p. Because,

that is how much I trust this node; it only participated in p faction of the decisions. So,

that is the confidence that I have in it.



So, if it is saying that with W1 weight, do this I will only do it with p into W 1 weight

does that make sense. And there is again a squared egg with vacuum kind of explanation

for this ok. Which was there in the quiz, last year which is very convoluted, it does not

really give you the true picture because, you can derive some math and so, that this is

mathematically proper, but that again works in very specific conditions, but at least if

you get the intuition that is fine that what we are saying is that. These nodes will leave an

active a few number of times. So, I will only trust them that much and I will just scale

their weights by that factor.

So, at test time I will just pass my test instance through one network, which is the full

network with the weights scaled according to the rule which, I just said that is exactly

what dropout does. How many if you understand this? And the final interpretation of

dropout right.
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So, what dropout actually  does is,  we will  apply some kind of masking noise to the

hidden units right. Since the same as seeing that you are computing the hidden unit, but

then you are masking it off ok.

So, what is the effect of this? I will give you the answer and I like; I like you to think

about it. The answer is that it prevents the neurons from becoming lazy. What do lazy

people do? They depend on others yeah actually yeah; they depend on others now. So, let



me answer that give the answer for this and then tell me whether that is still contradict

ok.

So, let us see right consider this layer of neurons. All of these are collectively responsible

for what happens to this guy right; Now you see, what I mean by neurons becoming

lazy? I could just see ok. I will not give my input these other neurons will take care of it

right, they will adjust their weights.

So, that they eventually, it  will  fire or not  fire  or whatever  right  you see that  could

happen, but now these neurons cannot rely on their neighbors. Because they do not know

when their neighbors are going to ditch them right? They will suddenly drop off ok. And

now I was waiting for my neighbor to actually do something and he is not going to do it.

So, I have to be alert always do you get the analogy right.

So,  these  guys  are  collectively  responsible  for  something  and  they  know that  some

people  in  the  collection  are going to  betray  them.  So, each of them has  to  be more

careful;.  so, the more technical term for this is that does not allow the neurons to co

adapted right.

So, it does not allow them to get into this mutual agreement that you take care of certain

things, I will take care of certain things and together we will do the job right. You do

question 1, I will do question 2, I am ok, it does not allow them to do this.

So, let us just concretize that intuition a bit for. So, essentially a hidden unit cannot rely

too much on other units as they may get dropped out at any time. Each hidden neuron

has to learn to be more robust right. It has to do the job as if it is the only guy responsible

for the job and let us consider one of these neurons h i.
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And let us see that, a h i learns to detect faces; sorry, it learns to detect a nose. So, I am

trying to do face detection whether, an image is about a face or not and h i is the feature

which fires. If there is a face somewhere, if there is a nose somewhere in the image is

that fine.

Now, if all  these guys start acting lazily ok. This guy is going to detect a nose; that

means, definitely face will be there. So, I do not need to do anything right, what would

happen now? Suddenly this guy is going to go away dropped out; so then, these other

guys need to do one of 2 things; either add redundancy; that means, one of them should

also  take  responsibility  for  detecting  a  nose  or  do  it  in  a  different  way.  Take

responsibility for detecting the lips or the eyes or some other part do you get that? Right

because, you know that I cannot co adopted with my other neurons; I cannot say that ok,

in these front facing faces you just detect the nose and will be done and we will all keep

quiet right.

I  do not  know whether, you will  do your job properly. So,  I  will  have to add more

redundancy. You detect a nose, I will also detect a nose or you detect a nose and I will

detect  something  else  which  helps  detecting  the  feature  right.  So,  that  is  why these

networks become more and more robust as you add this proper ok.
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So, that is all that I had to say I still do not know whether I have answered your question

or not. All of them try to detect nose; see as long as that helps reducing the final loss it is

fine. It is just the case that you would have some training images, where the nose is not

visible maybe that person is drinking something right.

So, for at least for those training instances someone else has to take care that you detect

from the other images right. Otherwise, a loss would not be 0 for that training instance.

So, as long as you have some training instances see, if all your training instances can be

detected just by detecting the nose. Then, there is nothing wrong in all of them trying to

detect the nose. So, if the training it is like that it will happen, but the hope is the training

data is not like that right; is that fine? So we will end here.


