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Better activation functions

Let us start with Better activation functions.
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So, before I get into activation functions right, let me first tell  you why I care about

activation functions, why do I actually want to come up with better activation functions

so, will start with the following question. What makes deep neural networks powerful

among other things? What is this one thing which makes it powerful? So, let me give you

this intuition.

(Refer Slide Time: 00:34)

This I have a deep network ok, and do not worry it is a thin network, but I could have

had a wide network also,  but  just  for illustration  I  have taking a deep network thin

network 

Now imagine that, each of these neurons that you have. If I replace the sigmoid in each

layer by a simple linear transformation a by the way this is technically incorrect.  So,

orange is always input. So, this should not be a sigmoid there right, either add one more

layer there or let us change the figure fine.

So, suppose I replace all these sigmoids by linear transformations, what would y be can

you write? Y as a function of x. What would it be give me the function? Will we just be

this right. So, first we will do w 1 of x which is this right, then will take w 2 of that then

w 3 of that and w 4 of that right.

So, I could actually have written this just as y equal to W x where W is equal to w 4 w 3

w 2 w 1. So, there is no depth here, there is actually only one weight which I could have



learned you get that right. If you just have all linear transformations, then essentially you

do not have so many weights, you just have one weight throughout you get that make

sense.

(Refer Slide Time: 01:53)

So, what you are learning eventually? We will just y as a linear function of x and initially

at some point we started off with such linear functions right; w transpose x in the case of

perceptron and m p neurons.

So, what does that lead to what kind of decision boundaries does that  lead to linear

decision boundary right. So, if you do not have these nonlinearities we cannot have these

arbitrary decision boundaries will only be left with linear decision boundaries.



(Refer Slide Time: 02:20)

In particular, will not be able to solve this problem that we had right we were given some

red and blue points and there was no way to draw a line such that the red points are

separated from the blue points. What we needed is some kind of circles or ellipses to

separate the red points from the blue points that cannot be done with linear decision

boundaries.  That  can happen only, if  you use a  deep neural  network with non-linear

decision boundaries and we actually have a proof for that. What that proof the universal

approximation theorem actually towards right.

(Refer Slide Time: 02:51)



So, that is why nonlinearities or the activation functions clear a very important role in the

success of deep neural networks right. Hence you want to examine them very closely and

see, what are the newer kinds of nonlinearities that have been proposed. So, we always

start with the basics. So, will start with sigmoid see what are the problems with sigmoid?

And then see what we can do to solve some of these problems? Ok.

(Refer Slide Time: 03:13)

So, this is what the sigmoid function looks like you have seen it a million times and it

actually constrains the input to 0 to 1 right. So, it takes some input and it constrains it 2

values between 0 to 1. Now since, we are always interested in gradients right. Because,

the entire training and that is why I did that precursor in the first module the training

always depends on gradients.

So, it is always important to look at what does the gradient look like? So, we know what

the gradient looks like? We have computed this is just sigmoid of x into 1 minus sigmoid

of x ok. So now let us see what happens if you use such a sigmoid neuron in a deep

neural network ok.



(Refer Slide Time: 03:49)

This is a deep neural network and without loss of generality I am going to use a thin deep

network, but the same holds for a deep for a wide deep network also. So, suppose you

are interested in computing the gradient with respect to w 2 right. At some point in the

chain rule, you will have this term. How many of you are convinced about this? Ok, and

that will lead to this could that cause a problem.

So, at some one of the terms in your chain rule is going to be this dou h 3 by dou a 3. I

am assuming all of you are convinced about that and I have given you the exact formula

for dou h 3 by dou a 3 will that lead to a problem.

Student: (Refer Time: 4:32).

Good. So, what is the consequence of this to answer this, we need to understand the

concept of saturation right.



(Refer Slide Time: 04:40)

So, a sigmoid neuron is said to have saturated. If it is output is 1 or 0 or rather close to 1

or close to 0 ok. What would happen in that case to the gradient?

Student: (Refer Time: 4:48).

It  will  vanish  right,  because  sigmoid  of  x  into  1  minus  sigmoid  of  x.  So,  it  either

extremes is going to vanish and you do not even need the formula for that. You can just

see it from the diagram right. Because, the gradient here is going to be 0, that is obvious

right. It just a what horizontal line.

So, this gradient would be 0. So fine, why does it bother us? What is our entire training

premise based on gradients? Right, what does our update rule? What happens, if this guy

is 0 no update e the weights just stay where they are right; that means, the training gets

stalled right.

So think about this right, if all the neurons in your network have saturated; that means,

all the weights the gradients will be 0; that means, all the weights will remain where they

are you pass another input.  Nothing is  going to change right.  It  still  be 0 so,  if this

neurons have saturated your training will just stalled. So, that was one of the reasons

which is to cause problem in training deep neural networks earlier right.



(Refer Slide Time: 06:05)

So that is one of the reason, why it was not converging? Because these weights used to

these neurons is to saturate. So, this is one problem with sigmoid neurons a saturated

sigmoid neuron can cause the gradient to vanish.

(Refer Slide Time: 06:15)

But, why would the neurons saturated? I mean, what would cause them to saturate? Ok,

this saturate find their gradients will vanish, but why would they saturate? We should be

able to get some hints from the figure that has been drawn. So, this is actually that x

needs to be changed.



So, on the x axis we have x quite obviously, but that has to be something else ah. So,

what  it  is?  What  is  happening  is?  What  does  the  sigmoid  neuron  do?  It  takes  this

aggregate it or someone just disappear (Refer Time: 7:26). So, is it very boring today no

right ok. So, you have this aggregated sum of the inputs. Once, you have that aggregation

you applied the sigmoid now tell me when would it saturated.

Student: (Refer Time: 7:39).

When the aggregation is very large; that means, one of the 2 things could happen either

the x’s are very large or the w’s are very large. Would the x is x is be large I see a lot of

you saying no why?

Student: (Refer Time: 7:45).

Good we normalize them right. We make sure they are between 0 to 1. So, we do not

allow those arbitrary large values of pressure density and so on right. We make sure they

are between 0 to 1. So, then the weights can be a problem right. Now, why would the

weights be lies move later first?

Student: (Refer Time: 7:58).

If I initialize the weights to a large value, if I initialize all my weights in my infinite

wisdom to a large value, what would happen right from the first training example itself.

W i x i would take on a very large value and your neurons will start saturating right. So,

imagine if all the weights throughout my network are initialized to large values.

Then right from training instance 0, my neurons will start saturating and I will not be

able to train anything. How many of you experienced this while doing back propagation?

And the others did not do the assignment, they copied it please raise your hands. How

many of you experienced it? Now many more hands will be raised still now ok. Honest

people that is a paradox, but.



(Refer Slide Time: 08:20)

Consider what would happen if you use sigmoid neurons and initialize the weights to a

very high value.  They will  start  saturating and hence,  you will  have this  problem of

vanishing gradients. Everyone gets this, so this is a problem at this sigmoid neurons.

(Refer Slide Time: 08:37)

The other problem with sigmoid neurons which is very interesting is that they are not 0

centered. What do I mean by that? They are not 0 center that is, what it ok. So, sigmoid

is are not 0 centered. What do I mean with that? Mean by that they are not 0 centered; the



value is between 0 to 1 right. So, the average cannot be 0 it is always going to be above 0

ok. Sigmoid neurons are always going to take on positive values between 0 to 1.

So, y is that a problem. So, that is an interesting explanation. Oh did I say that did I put

the acknowledgements somewhere. So, all of this material that I have been talking about

it is taken from Andrej Karpathys lecture notes. So, here is this interesting explanation

for this.

So now, consider this particular network and I am going to focus only on this part; that

means, the output layer and just the layer before that and the layer before that has these 2

weights w1 and w 2. I am going to focus on that.

So, to update these weights, I need to compute what I will carry a gun from next time?

All this is on camera.  So,  what do we need to compute gradient? Ok now, you will

answer. So, we need to compute the gradient with respect to w1 and w 2 and this is what

it is going to look like? What is the red part and blue part? Why red and blue the red part

is dash for both common for both right.

So, this is going to be common I do not know why I did that? Ok (Refer Time: 9:39) ok.

So, this red part is common for both and what is the blue part actually? What is dou a 3

by dou w 1 h 2 1 and dou a 3 by dou W 2? Everyone gets this; you are reading this

formula and telling me right.

So, dou a 3 by dou w 1 is just h 2 1 and dou a 3 by dou w 2 is just h 2 2 ok. So, let me

just plug in those values and note that h 2 1 and h 3 are between 0 to 1. So, can you make

some interesting commentary on this interesting, but useful not just philosophical stuff?

That these 2 derivatives are for the weights at a given layer, I have just taken 2 weights,

but I could have taken n weights and the same thing would have hold right.

Because I know that the derivative is proportional to the input that it gets and the rest of

the part is going to be constant because that is coming from the chain rule up to the

previous layer right.

So now, what is happening because of that, just to make fun of you guys. I mean, if you

get that sorry, good good yeah it is not very straightforward, but let us see. So, if the first



common term in red is positive right. Then, what would happen to these 2 guys? They

would both be positive right, because h 2 1 and h 2 2 are positive.

Now, the first common term in red is negative then, what would happen to these 2 guys?

Both negative so; that means, the gradients of the weights at a particular layer where,

either all be positive or they will all be negative you get that, that is because of this.

Common part and the blue part the blue part we know is positive.

So, what matters is the common part and that common part can either be positive or

negative for all of them together right; that means, for a given layer all the gradients at a

layer are either positive or they are all negative. So, let us see what is the implication of

that right?

(Refer Slide Time: 12:14)

So, this actually restricts the possible update directions.

So, which is the quadrant? Which has all positive first? Ok sorry, for embarrassing yeah

and all the negative is the third quadrant; that means, your movements can only happen

in the first quadrant and the third quadrant. So, do you see a problem with this right? So,

you are going to actually try to move that your theta.

Which is a collection of w 1 and w 2 is theta minus eta into the gradient right. And you

know that, this vector which is the gradient vector can either be positive; that means can

lie  in the first  quadrant  or it  can lie  in the third quadrant.  These movements  are not



possible; that means, there are certain turns or certain movements or certain directions,

that I am not allowed to take. So, what would this mean it would take a dash time to

converge.

Student: Longer time.

Longer time to converge right because, I am restricting my movement; so, imagine you

have to go from destination to destination b and I say that you can never take a right turn

right. And there is some going to be some problem, it will take longer to reach there

unless the directions are to our left right unless your destination is (Refer Time: 13:22),

but that will not happen ok.

(Refer Slide Time: 13:25)

So, suppose this is the optimal w star.



(Refer Slide Time: 13:29)

And we start with some random initialization because, that is why we are going to start.

Then the only way I can reach it is, I may by making a series of this kind of movements

right.  As  the  exact  pattern  is,  what  will  have  to  take?  Because  these  are  the  only

movements which are allowed or some movements which are allowed and it will lead to

a certain cryptic pattern and I will not be able to have the complete freedom of moving in

the direction. Which would have directly, taken me to the optimal. How many of you get

this argument? Ok good.

So, that is a problem with something not being 0 center ok. And lastly sigmoids are

expensive to compute because; you have to do this EXP right. It is not something as

easier as something else that we will see in the lecture today ok. So, these are some

problems with sigmoid functions. So now, peoples yeah.

Student: (Refer Time: 14:15).

So, we will ah. So, this is some issues that were they with sigmoid functions. So, this

pointed that ok, maybe we should try better activation functions.



(Refer Slide Time: 14:23)

That is why tanh become very popular, but tanh is not something which happened post

2006 right. So, this was like 92 or 93. When I think Yan Lacunae had started moving to

tanh from sigmoid functions right. Now again here other inputs are compressed between

minus point to 1 ok. Where inputs are now 0 centered which takes care of this problem

which I mentioned at the end right.

That these directions of movements are constrained ok, and was the derivative of this

function 1 minus tanh square right. What happens at saturation even without looking at

the formula? The gradient would vanish to 0 right. So, the vanishing gradient problem is

still there.

What you have solved is a problem of 0 centering? And that itself used to give better

results  than  just  using  a  sigmoid  function,  but  it  is  still  computationally  expensive

because,  you still  have to do these e raise 2 components right.  The you still  have to

compute these exponential powers right. So, it is still computationally expensive.



(Refer Slide Time: 15:17)

So, then in around 2012 I guess is when this ReLU was introduced in the context of

convolutional neural networks right. And this is what the ReLU function actually looks

like. Is this a non-linear function, it just looks like a line right? Why is it a non-linear

function? It is a non-linear function right. Because, x is you cannot write x the output as

a function of I mean as a linear transformation right. So, you have this 0. In fact, if you

take 2 ReLU functions smartly.

(Refer Slide Time: 15:50)



You can actually get the sigmoid I mean you can get an approximate for the sigmoid

function. So, you can go back and check this right. So, if you take these 2 functions and

subtract one from the other what is this? This is a ReLU function this is also a real

function right.

So, I define ReLU as max of 0 comma x. So, both of these are ReLU functions some

variant  of  that  and now, if  you subtract  one from the  other. You will  actually  get  a

approximation of the sigmoid function right. And this cannot happen if you have 2 linear

functions  take  any  2  linear  functions,  you  will  not  be  able  to  get  this  kind  of  an

approximation.

(Refer Slide Time: 16:27)

So, ReLU is a non-linear function. What are the advantages of ReLU? One is, it does not

saturate  in the positive region right.  It  is computationally  very efficient  the output is

either 0 or x. There is no powers nothing like that right, and it practice it converges much

faster than sigmoid and tanh. So, that is what this 2012 paper show. And now, ReLU has

actually become more or less the standard in all converge to neural networks, ok.



(Refer Slide Time: 16:53)

But there is still a caveat while using ReLU. So, the derivative of ReLU we can see that

if x is less than 0. Then, the derivative is going to be 0 right and if x is greater than 0,

then the derivative is going to be 1 and that straight away follows from the definition of

ReLU which is 0 or x.

So, when it is 0 the derivative will be 0 and when it is x the derivative will be 1. So now,

consider this given network and let us assume and this is not a very far faced assumed.

Assumption it can happen in practice that, at some point a large gradient causes the bias

b to be updated to a large negative value ok. So, what I am saying is that something

happens and b gets updated to a large negative value.



(Refer Slide Time: 17:41)

Now, what would happen to this quantity remember this quantity which I have circled is

actually the input to the blue colored ReLU neuron that I have. So, I am asking you what

would happen to that input? That input would become negative.

So, the neuron would output 0 and I am calling it a dead neuron. Why? If the input is 0, I

mean is a input is negative then, the ReLU functions, output would be 0. What would

happen to the gradients during back propagation 0? That means, what would happen to

the weights?

Student: (Refer Time: 18:06).

Would not be updated right now, but that is fine right. If you give some other input this

will recover. Why am I calling a dead means permanent? Right, unless you are in some

fantasy world, but dead is dead right. So, why am I saying that it is dead? I could might

as well I would give it a next input and then probably things would be ok, bias is still

very negative because nothing is getting updated right or bias is still very negative. You

know that x 1 and x 2 are constrained because, you have normalized them right and w 1

and w 2 have not been updated.

So, still the situation does not change. So, what happens is that once a ReLU neuron dies

because, somewhere in the chain rule you got a 0. It will stay dead forever ok; it will

never be able to come out of that. It will always produce a negative output; that means,



that output will be clamped to 0; that means, no gradients will flow back and; that means,

all the weights will not get updated connected that neuron right.

(Refer Slide Time: 19:16)

So,  in  practice  when you train  a  network with  ReLU, you will  observe  that  a  large

fraction of the units can die if the learning rate is set too high why this f condition?

Student: (Refer Time: 19:30).

What was the assumption that I made, that the bias receives a large negative update. And

that is possible if your learning rate is very high. Because, you got some small negative

gradient, but your learning rate blew it up.

Now, what is the practical implication of this? If a training a network and a large number

of your ReLU neurons have died. What does it mean? Most parts of your network are

dash useless; they are not learning any feature nothing right is all 0; that means, you have

this large number of parameters versus getting wasted. Because, they feed into a ReLU

you function and the ReLU function just keeps outputting 0.

 So, if you have n neurons in the particular layer and most of them are 0; that means, you

are not really learning an n dimensional feature representation. You are just learning a

much smaller feature representation right. So, can you give me a simple way of one

simple way of avoiding this among many other ways?



Student: (Refer Time: 21:07).

No dropout is statistical right, it is probabilistic this is like always dead one thing is to

update the weight to a large to a positive value and 0.01 mind you is a large positive

value right. Later on we will see y, but 0.01 is reasonably large ok. So, were going to

initialize the bias to a positive value.

So, that even if this large negative gradient flows through there is still a chance that it

will not become very negative. And hence, it will not mess up the things the way it does

that is, one solution to that right, but still you will find that even after that the ReLU

neuron  a  lot  of  those  can  die,  but  still  in  practice  they  work  better  for  a  deep

convolutional neural network, and we can also use other variants of ReLU.

(Refer Slide Time: 21:31)

So, there have been to avoid this dead neuron problem. There are other variants of ReLU,

which have been proposed, and that is what we look at  next.  So, there is something

known as a leaky ReLU is it obvious from the equation, what it does right. So, instead of

producing 0 it will just produce a very small value proportional to the input. Now, what

would happen to the gradients? They will not saturate right. Will have the gradient would

be, if the input is negative what would the gradient be?

Student: (Refer Time: 21:56).



0.01 right so that means, some gradient will still flow through. How many if you get

this? Right so; that means, if you use a leaky ReLU neuron some gradient would still

flows through. So, just understand this trend right that ah. And this is I mean all this stuff

is simple there is nothing great in this, but just put it in context right.

So,  in  2006 to  2009 people  realized.  Ok now, we can  trained  networks  and maybe

whatever, we have done with unsupervised pre training actually corresponds to better

initializations or better optimizations or better activations and so on.

So now let us try doing research in that. So, that led to the discovery of ReLU, now

people started observing problems with ReLU and then proposed a variant of it which is

leaky ReLU right. So, that is how this area has now become very prolific and grow right.

So,  we started  off  with  this  seed  idea  that,  it  is  possible  to  train  these  deep  neural

networks and now we are trying to make arrive at better and better ways of doing it.

Making  it  more  and  more  easier  to  train  them  and  take  care  of  some  of  these

irregularities which existed earlier. So, one of them being sigmoid not being a very neat

function to optimize with right. So, that is what all this is about individually all of these

are probably easy for you to understand. Once you go back and look at the slides you all

this is nothing great in this.

But, what I want you to really understand is this bigger picture of what is happening here

as  long  as  you  get  that  time  frame  with.  And  of  course,  leaky  ReLU  is  again

computationally very efficient. There is no exponents no squares nothing like that, and it

is close to 0 centered and it is still not 0 centered, but close to 0 centers because, you

have outputs on both side and then someone came up with a generalization of this, which

is parametric ReLU. So, y 0.01 make it alpha x and alpha will also be a.

Student: Parameter.

Parameter, it is a trainable parameter it is not a hyper parameter. Ok, how many of you

know the difference between parameter and hyper parameter? Ok, you have used this in

the  back propagation  as  I  am right.  So,  it  is  a  trainable  hyper  parameter  it  will  get

optimized along with your other parameters in the network.



(Refer Slide Time: 23:55)

So,  then  someone  said  leaky  ReLU fine  parametric  ReLU is  fine.  Let  us  try  to  do

exponential ReLU ok. So, it has all the benefits of ReLU it ensures that, at least a small

gradient will flow through even when your inputs are negative; that means, it avoids this

dead neuron problem again close to 0 centered outputs, but it is expensive because now

we have added this exponential right.

So, these are all ideas which came out during this period and all of them were shown to

work better than the other and so on. And of course, at the end I have to tell you a final

conclusion right. Whenever, I give you so many possibilities.

So, I have given you sigmoid tanh ReLU parametric leaky exponential. Now, what do

you use? Right this the idea is not to confuse you, but to give you one solution, which

would largely work yeah? What regularization?

Student: (Refer Time: 24:45).

Yeah, you could have done yeah that (Refer Time: 24:48) there is exactly. So, a lot of this

research right, which has happened in this period. It is not a lot of it is juristic right; you

solve one problem with ReLU. Ok, the neurons and saturated ok just make it something

which does not saturated.



(Refer Slide Time: 25:05)

So that is there, it is possible that the other solutions would also go there is not that. This

is the only solution which works now, then someone came out with max out neuron

which is a generalization of ReLU and leaky ReLU. Why do I say it is a generalization?

What was ReLU? That means, w 1 equal to b 1 equal to 0, w 2 equal to 1.

So,  it  is  a  special  case  of  the  max  out  neuron.  What  about  leaky  ReLU?,  this  was

parametric value, but again what about. So now, what is happening w 1 equal to alpha b

1 equal to 0, W 2 equal to 1 b 2 equal to 0. So you see how it generalizes right. So, this is

how these variants keep, kept coming up 



(Refer Slide Time: 26:05)

Now, the problem of course is, doubles the number of parameters  right because you

earlier had only w transpose x plus b. Now, you have w 1 transpose b 1, w 2 transpose b

2 and so on right. So, it is actually doubling the number of parameters that you have.

(Refer Slide Time: 26:18)

So now coming to the final conclusion of all of this right, what you need to remember is

that sigmoids are bad.



So, no one uses sigmoids in convolutional neural networks. They still use somewhere, I

am I am sorry, about this ReLU is more or less the standard unit for convolutional neural

networks.

So, any standard CNN that you will pick up it will use ReLU as the activation function.

If you want you can explore leaky ReLU max out ELU and so on, but it will require a lot

of careful tuning. Say, if you want to use something out of the bulk box ReLU is just fine

ReLU just works fine in practice despite all this dead neuron and other problems.

Student: (Refer Time: 27:20).

Yeah. So then, the argument for that is that, how often when you reach the point x equal

to 0 right? So, the chance of that having is happening is very, very low. And if you get

there, you can always approximate it by some epsilon or something and for that training

instance  just  go  on  right.  Any  ways  you  are  making  so  many  approximations  with

stochastic and mini batch and so on.

So, this is one more approximation that is how people typically deal with it, but in most

cases, it will not come in that point appearing is very low, but the question is valid and

tanh sigmoids are still used in LSTM s and RNN s, which you will see at some later

point in the course. So, there are a couple of more modules that I need to do. So, we just

take a break here.


