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Better Initialization Strategies

So, in this module we will talk about Better Initialization Strategies.

(Refer Slide Time: 00:17)

So, this is where we are in the story right. We saw that deep learning has evolved and at

least these are the 4 things which have happened. So, we have by the way this slide is

incomplete. What are the other things which have happened actually which you already

said in the beginning 2 more things which are not technical, but which happened more

data right. 

And more compute, but these are not really technical in the sense that, I mean this just

happened we have large amounts of data; that means, more data means, what if you are

more data for training. You would have complex networks, but not over fit right because,

you have so many, so much of data right. And more compute of course, it speeds up

some of these matrix computations which happen.



So, remember in a deep neural network most of the things which are doing are matrix,

matrix operations right. You are taking are that is what exactly you did in your back

propagation assignment. You did a lot of matrix vector computations and so on, and the

advent of g p use this. Became, very very fast rate orders of magnitude fast.

So, this 2 which are here as nothing much to talk about that is just something we all

understand,  what  has  happened  they. And so  now, we will  talk  about  better  weight

initialization strategies.

(Refer Slide Time: 01:27)

So, let us start with this question right. We will take this network and we will ask this

question what happens if we initialize all the weights to 0. I like it when you all try to

visualize it and. So, you have to see what happens right. So, let us start with a 1 1, which

is w 1 1 x 1 plus w 1 2 x 2.

So, I always start small. I do not try to see what will happen everywhere, just start with

one neuron and see what happens take a 1 2. What would a one month’s value b? If all

the weights are initialized to 0 0 and a 1 2 again 0 right and same for a 1 3 it is all the

way all the neurons in this layer are going to be 0, till is it.

So; that means, they will all get the same activation. So, if the a's are same the h s are

also going to be same and that is obvious irrespective of what non-linearity you use now



what will happen during back propagation what will delta w 1 1 b. This again I do not

know why you do this ok, anyway that will be raiser into x 1 right.

So,  remember  that  the  gradient  is  always  proportional  to  the  input.  And  you  have

somewhere along the lines along the chain rule. You have this h 1 1 and a 1 1 ok. Just

remember that and what would delta at gradient of w 2 1 b is that fine.

Now, can you see some things on the left hand side and make some comments on the

gradients. We have seen that a 1 1 is same as a 1 2 and h 1 1 is same as h 1 2; that means,

these gradients are going to be equal right; that means, the weight started off at the same

value. They are going to get the same updates and again remain at the same or different

value, but this same right. Then of course, move from where you started will not be 0

anymore, but they will all be at the same value.

(Refer Slide Time: 03:24)

Both the weights will get updated with the same value and they will remain equal so, but

fine as I keep training they will move away from each other right. This is what I told you,

when you feed in the first example take a both the weights remain the same, but now if

you feed another example and you keep feeding batches there. There is no dearth of data

that, you have and eventually these weights will move away from each other.



The update is the same again. The weights are the same again the same situation will

hold right. Again your w 1 1 x 1 plus w 1 2 x 2 is going to be the same as w 2 and x 1

plus w 2 2 x 2 and the same argument repeats.

How many if you get this,. So, once you initialize the weights to 0 in all subsequent

iterations, the weights are going to remain the same. I mean, they will move away from

0, but they will all be equal and this symmetry will never break during training. So, what

actually is happening in terms of the capacity of the network this is same as.

Student: Single line tying the weights.

The same as tying the weights so, this symmetry will never break during training. So,

asking what is the net effect which is happening?

So, you have so many weights in your layer, but all of them are moving together will so

in essence. You do not have the same freedom as you have with n different weights right.

Here, in some sense unintentionally tied them because, it started off with the same value.

Now you are all moving at the same values rate you are all going to the same value. So,

you do not really have the amount of freedom that you would actually expect with n

different parameters all of you get this.

And the same is true for w 1 2 and w 2 2 also which are the weights connected to the

second neuron and this is. In fact, true for all the weights in layer 2 you can actually

mathematically verify it; that means, whatever this small analysis that I did here. Just go

back and do it for all the weights in the network and you will see that all of them. If you

are going to initialize them to 0 all of them are going to remain equally.

This is known as this symmetry breaking problem this is are known problem. This is

existed much before 2006 and so on. If we initialize all the weights to 0 you will have the

symmetry breaking problem is there. Anything sacrosanct about 0 or would this happen

even if you initializer to same, but non 0 values and that should have been cleared from

the iteration right. Because, after the first iteration we were at non 0 weights and after

that the story repeated right.

So, even if you initialize it to non zero weights the same story is going to report repeat

so; that means, as long as you initialize all the weights to the same value. You are going



to end up with this symmetry breaking problem ok, which is not good. So, what is it that

we have learnt about initializing weights?

Student: (Refer Time: 6:32).

Definitely do not initialize all weights to 0, definitely do not realize them to the same

value ok. This is the first thing that you have learned. So, we are seeing different ways of

not making the light bulb and then, we will  come to a way of making it.  So, 0 and

equalist no bad yes, some weights will not get updates in that case right.

So, then that that should be fine so, that is the other thing I wanted to make at some point

right,  these  4  things  right  initialization  optimization  regularization  and  activation

function. These are not independent things they are all tied to each other.

So, as you said now if you use regularization then probably you could be a bit careless

with the initialization. Even if you had initialize the weights together drop out would

have ensured that, some of these weights are not active at a particular training instance;

that means, they will not get weight updates; that means, they will move away from the

other weights right.

So, that is this is not that only one of these things can be done right. You are going to use

a combination of these things, but while analyzing them, we will just look at one of these

things. Assuming that, the others are not being, right so will assume that we are not using

drop order anything is that fine.



(Refer Slide Time: 07:01)

So, this at least this in practice you are not supposed to initialize the weights to 0s and

equal values that is what we have learned so far. Now for the rest of the to convince you

about some other weight initialization methods. What I am going to do is? I am going to

take a feed forward network, where you have as input some thousand points? Each of

this point is 500 dimensional. And the input data is drawn from a unit Gaussian. What I

mean by that is? You have this x 1 2 x 1 500 rate for the data instance one.

So, all of these 500 dimensions come from a unit Gaussian is that fine. So, this comes

from a unit Gaussian. This comes from a unit Gaussian and so on ok. That is what I am

going to assume?



(Refer Slide Time: 07:50)

And the network has 5 layers each layer has 500 neurons. The input is 500 neurons each

of  the  5  layers  is  also  500 neurons.  And  now, we will  run  forward  propagation  no

backward propagation, no loss nothing and I am not even giving you an objective. This is

just some input and I just want to see, what happens up to the last layer? I am not even

bothered about the actual last layer; that means, I am not trying to minimize any cost

entropy squared error loss anything.

(Refer Slide Time: 08:18)



So, let us try a few initialization strategies. So, we realize 0 is not good realize equal is

not good. So, let us try some random initializations, but small weights and this is my way

of randomly initializing with small weights.

So, my W is a matrix of size fan in into fan out rate, which is n cross n ok the number of

weights  coming  in  and  out  rate.  So,  n  cross  n  and  I  am  drawing  from a  uniform

distribution and then, multiplying it by point 0 1 which ensures that, all the weights are

very small you get the setup now with this, I am going to start with the input and then

keep doing these transformation.

So,  I  will  do W transpose X plus  b pass  it  through a sigmoid and do this  5  times.

Because, I have 5 deep layers now, this is what happens to the activations across the 5

layers? So, the first layer remember that we had drawn from a unit Gaussian right. So,

that is what the data input data looks like. So, this is the first layer which is the input data

basically and then this is what happens across the different layers.

So, what is actually happening and this is for the tan h activation function. There is no

variance in the output of. So, this tells  me, so this basically tells  me that, for all the

neurons what is the average value that, I am getting right and I should ideally get some

histogram that for some neurons I am getting the value minus 1 for some neurons minus

0.9 0.8 and so on, but what this is telling me is as, I keep progressing across the layers all

the neurons have very similar values and they are all close to 0.

This is what actually happens in practice; I have just actually run it and computed the

histogram.



(Refer Slide Time: 10:02)

And if I use sigmoid activation functions, again something similar all the values tend to

be close to the center which is 0.5 right so, this is 0.5 and although I had started with a

nice Gaussian distribution.

(Refer Slide Time: 10:15)

Now, what will happen during back propagation? So, do not try to think for now that

why, this happens I am just telling you have actually run the code. And this is what

happens? Now given that, this has happened. What will happen during back propagation?

So, all the activations in a layer are very close to 0, all the gradients are going to be close



to 0; that means, no gradients are going to flow back; that means, which problem are we

dealing with vanishing gradient problem.

So, if you initialize your weights to very small values and this is easy to see in the case

of tan h. So, for tan h this is my function right and this is 0. Now remember that, this is w

I summation w I x I,  if  all my weights are close to 0 or very small  values. What is

summation w I x I going to be it is going to lie somewhere here right.

So, all these inputs are actually going to be very close to 0. Now if my inputs are going

to be close to  0,  I  know that  during back propagation  at  some point  my gradient  is

proportional to the input. That, I have given and when I say input here I mean layer 1,

layer 2, layer 3 and so on right. How many if you get this so far? Ok.

So;  that  means,  all  my  inputs  are  very  close  to  0,  now  my  gradients  are  actually

proportional to the input. So, all my gradients are also going to be close to 0; that means,

my gradients are vanishing right because, remember that across 5 layers you will have

these products of gradients right. All of them are very close to 0. So, you will end up

with something very close to 0 raise to 5.  How many if  you get this? Right,  so our

gradients are going to vanish.

(Refer Slide Time: 12:06)

If  you  do  this  very  small  initialization  of  the  weights  and  that  is  exactly  what  is

happening? So, this is the histogram for the gradients and I see that, all my gradients are



actually very close to 0; that means, no effective training is happening. My weights are

not receiving any updates this is what happens in practice. If you initialize your weights

to very small values ok.

(Refer Slide Time: 12:25)

Now, let us try to do the opposite of this very small values did not work. So, let me try

large values and for large values I just sample from the uniform distribution. I will get

some  numbers  between  0  to  1.  Now  can  you  guess  what  will  happen?  Remember

summation w I x I all your weights are large. So, why am I saying that number between 0

to 1 is actually large? It is not by all practical because; this is going to give me this

function is actually going to give me numbers between 0 to 1. Why am I calling them

large weights?

Student: (Refer Time: 12:54).

No, I will I just talked about the weights, assume there is no biases, how many of you get

that answer? Remember there are 500 neurons. So, if you have 500 small values, that

summation is going to be still large right. If you all of these are 0.4 or 0.5. Which still

looks small, but if you have 250 of these or if, you have 500 of these the resultant sum

could be somewhere of the order of 250 right. And that is very large because, if you pass

that to a sigma and neuron, what will happen saturation right. So, you get this why I am

calling these weights as large? Ok.



(Refer Slide Time: 13:30)

So, and this is actually what happens. So, when I have these tan h activations across all

the 5 layers. I observe that my neurons saturate I either get minus 1 as the output or plus

1 as the output. And same thing happens, if I use sigmoid activations I either get 0 as the

output or I get 1 as the output right. Neurons saturated means, what will happen gradients

will vanish right.

So, even if you initialize the weights to very large values all your gradients are going to

be close to 0 because, they are going to vanish and again you have a problem. So, what

have we seen so far? 0 is not good, equal is not good, small weights is not good, large

weight is not good. Then, what do we do go home ok.



(Refer Slide Time: 14:15)

So, let us see what to do? So, let us try to arrive at a more principled way of initializing

weights and this again do not should the messenger. I am going to give you a proof under

certain assumptions ok. So, just bear with me, I just tell you what those assumptions are

going to be as we go along. So, as I said right.

So, I mean you would argue that in practice these assumptions do not hold true, but at

least they give us some insights into, what is happening rate? What is the overall idea

behind? What is being proposed? So, let us start with that. So now, consider this deep

neural network and I am just considering the first layer of it. Where I have this neuron s

1 1 and I am talking about things before the activation.

So, I know that s 1 1 is equal to this quantity right. So, all the incoming weights to the

first neuron which is w 1 i into x i. Now for some reason, I am not telling you why I am

interested in the variance of this. Can you tell me why I am interested in the variance?

What did you see in the previous examples? There was no variance right,  there was

hardly any variance. So, let us see what happens if you compute the variance of this.

So, I am just taking the variance formula a variance of a sum is equal to the sum of the

variances right. This is of the form variance of a into b, where a is w 1 i and b is x i.

What is the formula for this? Or if you know it or do not know it do not care. So, this is

the formula ok.



So, this is the generic formula for variance of a into b. Where you have to assume that a

is w 1 i and b is xi. So, this is just a formula, there is no trick. Here, no matter I mean, no

nothing fancy here just apply the formula for variance of a b and substitute a is equal to

w 1 i and b is equal to x i.

(Refer Slide Time: 16:07)

Now, I will assume that all my inputs are 0 mean fine. We have been assuming that,

forever and all my weights are also from 0 mean ok. What is the effect of that which

quantities will disappear? This will disappear because mean as 0 means the expected

value of the weight is 0. So, the square of that is 0 an expected value of the input is 0 the

square of that is 0 ok.

So, what am I left with summation? Where I variance of x I into variance of w 1 I? Ok

now I am going to assume that the variance of x I is equal to the variance of x; that

means, it is the same for all the i’s. So, I add this remember I add these 500 inputs.

So, I am assuming that for all the inputs the variance is the same. They all come from a

similar variance distribution. And I am also going to make the same assumption for the

weights fine and then I end up with this neat formula that the variance of s 1 1 is equal to

n times the variance of w into variance of x right. Because, I assumed that all these terms

are equal and there are n such terms. Everyone is fine with the match so far with the

assumptions that we have.



(Refer Slide Time: 17:17)

So, in general for any of these neurons right instead of just s 1 1, I could take any s 1 i

and this is what the variance is going to be variance would turn out to be? Because? I

have assumed that all the weights and all the inputs come out from the same variance

distribution from a distribution having the same variance ok.

Now, let us what would happen if this quantity is very, very greater than 1? The variance

of s 1 i would be very large right. And what would happen if this variance tends to 0

variance would be very low. So, I am just giving you 2 extremes to build the intuition

and let us see what we are going to do with that intuition right.



(Refer Slide Time: 18:01)

Now, let me add one more layer and see. So, I have added one more layer and using the

same procedure as above. He will arrive at variance of s 2 1 is actually given by this

formula and actually what has happened here is, that this is s i had x i earlier, but now

instead of x ii have s 1 i because those are the inputs to this layer right.

So, this is exactly the formula that we had arrived at earlier. Assuming, 0 mean and the

same variance for all the weights and the inputs and I am s arriving in the same formula

for the next layer where, instead of x i have s 1 i everyone is fine with this ok. How

many if you get this? Ok fine.

So, this will result in this quantity ok, but I already had a formula for a variance of s 1 i.

What was that n into this quantity? So, I will just substituted there. So, I can say that

variance of s 2 1 is actually equal to this. I just substituted this value.

So, that turns out to be, I have a square here when I have 2 here. So, you see where I am

headed with this? What will be the variance of s k i. This raised to k and is on everyone

gets this ok. I can just continue the same analysis and, I have assumed that these weights

and always are the same variance right.



(Refer Slide Time: 19:29)

So, in general I can say this ok. Now can you tell me something about when would this

variance vanish when n variance of w is.

Student: Less than 1.

Less than one ok, and which is the thing that we should aim for you would want this

quantity to be equal to one. In which case it will neither blow up nor shrink fine. So, so it

to ensure that the variance is the output of any layer does not blow up or shrink. We

should ensure that n into variance of w is equal to 1 right.. So, what is this, this list take a

minute to understand this. I am saying that, I am going to initialize my weights.

So,  I  should  initialize  them in  such a  way that,  the  weights  are  coming  from some

distribution like we saw that the distribution was a uniform distribution from where, I

was drawing the weights.

So, they are coming from some distribution I should try to draw them from a distribution

such that, this condition holds. If this condition holds then across layers, my activations

will not blow up or shrink though that is exactly. What was happening in the earlier case

when I was doing those bad initializations with small values and large values. All if you,

get the idea ok. How many if you get this whatever I say said? Ok good.

So, let us see how to do that. So, what I am going to do is? I am going to consider a

random variable z ok. Where is it z comes from a normal distribution ok and I am going



to scale it is value, I will draw from there and then I am going to scale it by 1 by square

root of n. What is n number of neurons in each layer right? Here it is the same across all

layers, but it could also be different. So, I am considering a particular layer and n is the

number of neurons in that layer.

And now if w is actually equal to z by square root of n then, I can write that n into

variance of w is actually equal to this quantity. Everyone is fine with this? There is no

trickery here, I am just saying that, why I am doing this is not clear that will become

clear, but at least what I am doing is clear? I am drawing the weights I am taking a

random variable z which comes from a normal distribution and then, I am setting my

weights to whatever values I have drawn. I just divide them by the square root of n.

(Refer Slide Time: 21:49)

Now, let us see, what is variance of a z a square into variance of z? Hey that is a basic

formula all of us know this. So now, what is variance of z by one in z into 1 by square

root of n 1 by n into variance of z right. So, the n and n cancel and what is variance of z.

What did I assume about z it came from a normal distribution 0 mean and unit variance?

So, variance of z is 1; that means, this quantity n variance of w is going to be 1. If I have

initialized my weights such that, they are equal to this right and now, do you see whether

the weights are very small very large or what are they some now they made the weights

dependent on the number of neurons.



So, if you have very large number of neurons, you are drawing drawing weights such

that or you are initializing weights such that, it is some normal variable divided by the

square root of n right. So now, when you do this summation w I x I your summation

cannot blow up because, you have already divided it by n.

How many if you get this? So, this is a standard way used for initializing weights. How

many if you tried this for your back propagation assignment? Why did you try this ah?

Student: (Refer Time: 23:12).

Because, you are having some problems with saturation I guess right. So, this is how you

should initialize your weights.  This is more or less the standard technique and some

variance of this right. Because, instead of n you would have this fan in and fan in out it,

how many weights are coming in? And how many weights are going out?

So, you make it proportional to the square root of n into k or something like that right.

So,  but  in  general  this  idea  right  of  course,  this  proof  we  arrived  at  it  with  lot  of

assumptions, but we at least got to some principle way of initializing weights and this is

a largely used standard this and some variants of it right.

(Refer Slide Time: 23:43)

So now, let us see if I actually take the same network; that means 5 layers 500 neurons at

every layer and then initialize it using this. So, this exactly what I had told you right that

take it from a unit  distribution sorry a normal distribution? And then, divided by the



square root of the number of neurons in that layer and now let us see what happens

across the 5 layers.

You see what happens we get this good variance in the activation functions. They are not

all going to 0 or 1 or point 5 right. So, this solves the purpose for tan h activation and

also for the sigmoid activations right.

(Refer Slide Time: 24:18)

Do you see a good spread in the weights and remember actually for sigmoid? Although,

these values look close to each other, but this is the 0 to 1 range. This is actually minus 1

to 0 which will not happen for sigmoid. So, within the 0 to 1 range you get a good spread

if you initialize the weights this way.



(Refer Slide Time: 24:35)

But it turns out that, this initialization does not work for the ReLU function. In the ReLU

function you still see this effect that, you started off with a good spread, but as you keep

going across deps this spread disappears, why would that happen to someone gave an

intuition for this and is again one of those heuristic e things. That in the case of ReLU

you need to account for this divided by half. Because, half of the ReLU is not active right

half of the ReLU is 0.

(Refer Slide Time: 25:10)



So, you need to account for that fact and do this simple trick that, instead of taking the

square root of the fan in you. Take the square root of fan in by 2 because, you know that

half  the times  it  is  not going to  produce any output  right.  So,  that  is  a  very simple

heuristic  that  someone  tried.  And  that  leads  to  better  activation  functions  better

activations across all these layers right. So, as you see across all the layers the spread is

good now so, the same idea ok. So now, you have a good way of initializing neurons.

So, this should help you in your future assignments fine. So, this is how, what you have

learned about? How to initialize your weights? And it makes a lot of difference to, how

your network will behave weight? And that is what the I was trying to show that by

computing these activations across different layers? And I showed that as you change

these initializations strategies you get better activations.


