
Deep Learning
Prof. Mitesh M Khapra

Department of Computer Science Engineering
Indian Institute of Technology, Madras

Module – 10.3
Lecture – 10

SVD for learning word representations

So, in this module we will talk about using SVD for learning word representations.

(Refer Slide Time: 00:18)

So, what does singular value decomposition? Do yeah these are all possible variants. So,

people have tried various things and one of the PPMI one is the is the most reliable thing

that is what is given. But you can think of, I mean you said one there are 10 different

things which we can do for the co-occurrence matrix right, but this is the most popular

and most stable thing to do.

Yeah what is the single value decomposition do, can you read it from the slide please. It

gives the rank k approximation of the matrix. So, let me start defining a few things. So,

from now on when I refer to the co-occurrence matrix I would mean the XPPMI matrix

right which was the positive PMI which was replacing all negative PMIs by 0, and just

do not have this nasty variable I will just call it as X.

So, from now on whenever I say X, I mean the positive PMI co-occurrence matrix. So,

that is what this matrix is and we know that SVD gives us this reconstruction of the

original matrix. And fine it gives us the best rank k approximation of the original matrix,

and it discovers the latent semantics in the corpus. Everyone remembers this like that is

what we were by we were using PC and SVD and auto encoders it was able to discover

some latent semantics. And we will concretize this intuition with the help of our current

example, but for now I just want you to recall that it helps in discovering the latent

semantics.

(Refer Slide Time: 01:49)

Now, notice that this product and I think I have done this in one of the assignments or

something can be written as a sum of the following products right. So, I can write it as

sigma 1 u 1 v 1 transpose, sigma 2 u 2 v 2 transpose and so on. Can you tell me what this

sum is this is the rank 2 approximation of the original matrix and I keep taking more

terms I get more and more rank approximations of the original matrix? Now, and we all

know that, we all hopefully know that what is the dimension of this? It is a scalar vector

matrix, scalar vector matrix.

Student: (Refer Time: 02:27).

Ok. Now of course, you will say matrix, but what is the dimension of the matrix; why is

it a matrix? It is an outer product of 2 vectors right this, what is the size of this? n cross 1

into n cross 1 so that; sorry 1 cross n that gives you n cross n matrix. Everyone gets this

otherwise how is it a rank 1 approximation you have to get the original dimensions right.

Everyone is clear with this is an outer product.

(Refer Slide Time: 02:49)

And it belongs to R m cross n. Ok and if we truncate the sum at the first term we get the

rank 1 approximation and by SVD theorem we know that this is the best rank 1

approximation.

Now, what does this actually mean? That this is an approximation, what do we mean by

that? So, we will see that on the next slide and similarly in the same way if we truncate it

in the second term you get the same best rank 2 approximation.

(Refer Slide Time: 03:14)

Now, what do we mean by approximation here? Actually and I mean to say

approximation always in this course at least try to think in terms of compression. How

many elements are there in the original matrix? m cross n, that is how many elements

you need to describe the matrix completely. If you do a rank one approximation how

many elements are you using? m plus n plus 1 right; So, the original matrix has m cross n

entries, entries and when you do a rank 1 approximation you have m plus n plus 1 entry.

So, that that is the approximation right. So, you are trying to really compress the original

data using only these many variables you get that.

And if we do a rank 2 twice this right; So, as many rank I mean as deeper as you go in

the sum you will have that many elements to do the approximation, but what is important

is that the SVD theorem tells us that this is not just any random approximation. But this

is the best approximation that you could have done; that means, if you wanted to use

only these many elements these are the best elements to use, right? Everyone gets that.

(Refer Slide Time: 04:16)

So, as an analogy consider this right suppose you are given 8 bits to represent colors.

And this is how you represent very light green, light green, dark green and very dark

green this is what your representation is.

In this original 8-bit representation, there is some similarity between the colors, but it is

still a bit latent, but now if I were to ask you to use only 4 bits to represent these colors,

what would you do? The lowest significant bits; if you use the first 4 no then use only get

very light that is not the essence of that color right, you need the color to be there. So, if

you compress what would happen is. So, that is what happens in when you go from 256

bit colors to higher or lower, right? The distinctions between the colors go off.

So, all of them would be compressed to green well that is the most important, important

information in terms of the color right, because you need to be able to distinguish

between green and red, as suppose to very dark and very light that is the more important

information that is there right. So, when you compress it the most important information

in that entity should be retained. And that is exactly what SVD does when it does a

compression, it retains the most important information in the corresponding entries is

that clear is the Intel intuition clear fine.

(Refer Slide Time: 05:32)

So, let us actually do this. So, this is my original co-occurrence matrix X, and I just

repeat when I say, X I mean X PPMI. And now I have done SVD and I have done a low

rank approximation of it. I do not know what was the value of k I selected, but some

value of k it was definitely greater than 1 or 2. So now, you see a low rank

approximation of X, what is the first obvious thing that you notice? It is dense now it is

the longest sparse.

Now, can you tell me something about the colored entries, what was happening in the

original matrix X? The word system and machine was never co-occurring because of

which their value was 0. Same for human and user, but remember there is some

important information in this matrix, which also tells you what are the words with user

appears with and what are the words with human appears with, and that actually gives

you intuition that these two words are actually related right same for system and machine

System and machine both would appear in the context of words like interface, install, run

and so on. So, you know they are similar it just happens that these two words never

appeared together. So, this similarity between them was latent or hidden in the original

co-occurrence matrix. Now once I have done the SVD what has happened because I have

forced it to compress the data, it has retained the most important in information and

under that information these two words have actually come closer to each other right. So,

you see that now you have a non-zero entry for the similarity between those two word

pairs do you get the intuition and can you imagine that this would happen with SVD

And what is wrong in imagining you can, but I guess right that is what is happening with

this. So, you think about PCA you think about SVD you think about auto encoders all the

intuitions that we had build there the same is being applied here, right? All if you get this

fine yeah. After SVD you could have right that is not necessary that it should be positive

in the original matrix you do not have negative entries.

(Refer Slide Time: 07:31)

Now, here is a question right recall that earlier each row of the original matrix X served

as the representation of a word. This was my original X PPMI not the rank

approximation now in that case what would X X transpose give me? What would the ij th

entry of X X transpose be. So, let us look at this toy example you have this X matrix you

have xi and xj now I take X transpose.

Now, this is Xi this is Xj just standing. Now what would be the ij th entry of X X

transpose, it will just be the dot product between these two right; is that fine? So, this is

just the dot product between them and we know that dot product is more or less the same

as cosine similarity module over the normalization right, you just need to normalize it by

the norms of X and Xi and Xj in this case right?

So, I will just assume that this is a substitute for the cosine similarity. So, every entry at

every ij th cell in X X transpose is the cosine similarity between the representations of

the ith word and the g th word, is that clear to everyone? Ok fine. And in the original

case which was the XPPMI the cosine similarity between human and user was 0.21.

(Refer Slide Time: 08:51)

Now, once we do in SVD what is a good choice for the representation of the word i.

After SVD what is the dimension of X hat? It is again n cross m because it is a sum of m

cross n matrix. So, that the dimension of X hat is m cross n. Although it has been

constructed using fewer information, but the dimension is m cross n right; that means,

what is the size of the representation of every word? Still high dimensional still the same

n or v, whatever everyone gets that is there any confusion with that.

Now you could say that, I will just take the ith row of the reconstructed matrix and use

that as the representation. Because I know that now this representation is better some of

those 0 entries have changed they have captured the latent semantics between the words.

So, this is definitely better none is denying that that this compression has given us better

representation because we are only keeping the most important information.

Now, if I do X hat X hat transpose, remember X hat is the reconstructed matrix. Then

again by the same argument the ig th cell actually gives me the cosine similarity between

the I th word and the g th word. And you can see that now the cosine similarity between

human and user has actually increased. So, this is just for me to convince you that we

have learned more meaningful representations. So now, what do we choose as the

representation? I have still while computing this cosine similarity I have still used Xi

which is high dimensional which has the entire vocabulary as the number of columns as

a representation right.

So, there are 2 things coming out of here one is I really like this cosine similarity I see

that it has improved; that means, the representations were computing something

meaningful, but on the flip side I am still not happy because the representations are still

high dimensional. So, can you construct a wish list for me based on this. I would want

the same cosine similarity to be present as given by X hat, X hat transpose right, but I

would like to represent it by fewer dimensions, that is exactly what my wish list is.

(Refer Slide Time: 11:01)

So, let us see how do we do that now for no reason I am going to construct a matrix W

word equal to U sigma what is u sigma it is the part of the SVD right the SVD told us it

was U sigma V transpose. So, I am just considering this matrix I am going to call it W

for no particular reason. Now, let me take X hat X hat transpose, I can write it as this is

that fine, now what is the next step?

(Refer Slide Time: 11:32)

What does this mean? I want an answer right, this is that aha moment should be there or

otherwise there is no point. What is how many rows are there in W? The same as the

number of words in our vocabulary; what is the dimension of each row? K. So now, W

word has low dimensional representations for the words in the vocabulary, but while

doing this what have we not sacrificed the cosine similarity. The cosine similarity

obtained by this is actually the same as this, do you get that; how many if you see this is

very, very important? That if you have not understood, this everything is meaningless.

So, you see how from SVD we got a low rank or a low dimensional representation for

the words right, W word is just to be clear k and k is very, very less than V right. So now,

we have representations for words which are much smaller they are no longer V

dimensional remember in practice this k would be of the order 100, 200, 300 and

remember your vocabulary was of the order 50 k 1000 k and so on, right?

So, the huge reduction that you have got, and you have still been able to learn

meaningful representations which give you better similarity between related words,

right ?

(Refer Slide Time: 12:49)

So, conventionally W word which is U sigma and belongs to m cross k. So, I am sorry

for messing this up, but I have used m n and V are interchangeably. So, you would

understand it from context that m is V. And the other matrix which is V is known as the

W context matrix right what is the size of W context n cross k or k cross n, right?

That means it has the representations for all the context words and W word has a

representation for all the target words right. So, we had these words on the rows and the

context words on the column. So, W word has the representations for the rows and W

context has the representation for the corpus.

So, this what we have seen so far, and this is where we learn today; is what a NLP was 6

years back right before the advent of deep learning. If you wanted to use word

representations this is what you would do you would do con construct a co-occurrence

matrix try these tricks of PMI PPMI positive negative 0 and all those things those

heuristics. Then do a simple SVD retain the most important 100 200 dimensions and

treat that as word representations and use it for whatever you want to do.

Now, what needs to be seen is, what happened with deep learning and how have this way

of computing word representations changed over the past few years, right? So, that is

what we are going to see in the next lecture right.

