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SVD for learning word representations

So, in this module we will talk about using SVD for learning word representations. 

(Refer Slide Time: 00:18)

So, what does singular value decomposition? Do yeah these are all possible variants. So,

people have tried various things and one of the PPMI one is the is the most reliable thing

that is what is given. But you can think of, I mean you said one there are 10 different

things which we can do for the co-occurrence matrix right, but this is the most popular

and most stable thing to do. 

Yeah what is the single value decomposition do, can you read it from the slide please. It

gives the rank k approximation of the matrix. So, let me start defining a few things. So,

from now on when I refer to the co-occurrence matrix I would mean the XPPMI matrix

right which was the positive PMI which was replacing all negative PMIs by 0, and just

do not have this nasty variable I will just call it as X.



So, from now on whenever I say X, I mean the positive PMI co-occurrence matrix. So,

that is what this matrix is and we know that SVD gives us this reconstruction of the

original matrix. And fine it gives us the best rank k approximation of the original matrix,

and it discovers the latent semantics in the corpus. Everyone remembers this like that is

what we were by we were using PC and SVD and auto encoders it was able to discover

some latent semantics. And we will concretize this intuition with the help of our current

example,  but for now I just  want you to recall  that it  helps in discovering the latent

semantics. 

(Refer Slide Time: 01:49)

Now, notice that this product and I think I have done this in one of the assignments or

something can be written as a sum of the following products right. So, I can write it as

sigma 1 u 1 v 1 transpose, sigma 2 u 2 v 2 transpose and so on. Can you tell me what this

sum is this is the rank 2 approximation of the original matrix and I keep taking more

terms I get more and more rank approximations of the original matrix? Now, and we all

know that, we all hopefully know that what is the dimension of this? It is a scalar vector

matrix, scalar vector matrix.

Student: (Refer Time: 02:27). 

Ok. Now of course, you will say matrix, but what is the dimension of the matrix; why is

it a matrix? It is an outer product of 2 vectors right this, what is the size of this? n cross 1

into n cross 1 so that; sorry 1 cross n that gives you n cross n matrix. Everyone gets this



otherwise how is it a rank 1 approximation you have to get the original dimensions right.

Everyone is clear with this is an outer product.

(Refer Slide Time: 02:49)

And it belongs to R m cross n. Ok and if we truncate the sum at the first term we get the

rank  1  approximation  and  by  SVD  theorem  we  know  that  this  is  the  best  rank  1

approximation.

Now, what does this actually mean? That this is an approximation, what do we mean by

that? So, we will see that on the next slide and similarly in the same way if we truncate it

in the second term you get the same best rank 2 approximation.



(Refer Slide Time: 03:14)

Now,  what  do  we  mean  by  approximation  here?  Actually  and  I  mean  to  say

approximation always in this course at least try to think in terms of compression. How

many elements are there in the original matrix? m cross n, that is how many elements

you need to describe the matrix completely. If you do a rank one approximation how

many elements are you using? m plus n plus 1 right; So, the original matrix has m cross n

entries, entries and when you do a rank 1 approximation you have m plus n plus 1 entry.

So, that that is the approximation right. So, you are trying to really compress the original

data using only these many variables you get that. 

And if we do a rank 2 twice this right; So, as many rank I mean as deeper as you go in

the sum you will have that many elements to do the approximation, but what is important

is that the SVD theorem tells us that this is not just any random approximation. But this

is the best approximation that you could have done; that means, if you wanted to use

only these many elements these are the best elements to use, right? Everyone gets that. 



(Refer Slide Time: 04:16)

So, as an analogy consider this right suppose you are given 8 bits to represent colors.

And this is how you represent very light green, light green, dark green and very dark

green this is what your representation is.

In this original 8-bit representation, there is some similarity between the colors, but it is

still a bit latent, but now if I were to ask you to use only 4 bits to represent these colors,

what would you do? The lowest significant bits; if you use the first 4 no then use only get

very light that is not the essence of that color right, you need the color to be there. So, if

you compress what would happen is. So, that is what happens in when you go from 256

bit colors to higher or lower, right? The distinctions between the colors go off.

So, all of them would be compressed to green well that is the most important, important

information  in  terms  of  the  color  right,  because  you  need  to  be  able  to  distinguish

between green and red, as suppose to very dark and very light that is the more important

information that is there right. So, when you compress it the most important information

in that entity should be retained. And that is exactly  what SVD does when it  does a

compression, it retains the most important information in the corresponding entries is

that clear is the Intel intuition clear fine.



(Refer Slide Time: 05:32)

So, let us actually do this. So, this is my original co-occurrence matrix X, and I just

repeat when I say, X I mean X PPMI. And now I have done SVD and I have done a low

rank approximation of it. I do not know what was the value of k I selected, but some

value  of  k  it  was  definitely  greater  than  1  or  2.  So  now,  you  see  a  low  rank

approximation of X, what is the first obvious thing that you notice? It is dense now it is

the longest sparse. 

Now, can you tell me something about the colored entries, what was happening in the

original matrix X? The word system and machine was never co-occurring because of

which  their  value  was  0.  Same  for  human  and  user,  but  remember  there  is  some

important information in this matrix, which also tells you what are the words with user

appears with and what are the words with human appears with, and that actually gives

you intuition that these two words are actually related right same for system and machine

System and machine both would appear in the context of words like interface, install, run

and so on. So, you know they are similar it just happens that these two words never

appeared together. So, this similarity between them was latent or hidden in the original

co-occurrence matrix. Now once I have done the SVD what has happened because I have

forced it  to compress the data,  it  has retained the most important in information and

under that information these two words have actually come closer to each other right. So,



you see that now you have a non-zero entry for the similarity between those two word

pairs do you get the intuition and can you imagine that this would happen with SVD

And what is wrong in imagining you can, but I guess right that is what is happening with

this. So, you think about PCA you think about SVD you think about auto encoders all the

intuitions that we had build there the same is being applied here, right? All if you get this

fine yeah. After SVD you could have right that is not necessary that it should be positive

in the original matrix you do not have negative entries. 

(Refer Slide Time: 07:31)

Now, here is a question right recall that earlier each row of the original matrix X served

as  the  representation  of  a  word.  This  was  my  original  X  PPMI  not  the  rank

approximation now in that case what would X X transpose give me? What would the ij th

entry of X X transpose be. So, let us look at this toy example you have this X matrix you

have xi and xj now I take X transpose. 

Now, this  is  Xi this  is Xj just  standing. Now what would be the ij  th entry of X X

transpose, it will just be the dot product between these two right; is that fine? So, this is

just the dot product between them and we know that dot product is more or less the same

as cosine similarity module over the normalization right, you just need to normalize it by

the norms of X and Xi and Xj in this case right?



So, I will just assume that this is a substitute for the cosine similarity. So, every entry at

every ij th cell in X X transpose is the cosine similarity between the representations of

the ith word and the g th word, is that clear to everyone? Ok fine. And in the original

case which was the XPPMI the cosine similarity between human and user was 0.21.

(Refer Slide Time: 08:51)

Now, once we do in SVD what is a good choice for the representation of the word i.

After SVD what is the dimension of X hat? It is again n cross m because it is a sum of m

cross  n matrix.  So,  that  the dimension of  X hat  is  m cross  n.  Although it  has  been

constructed using fewer information, but the dimension is m cross n right; that means,

what is the size of the representation of every word? Still high dimensional still the same

n or v, whatever everyone gets that is there any confusion with that. 

Now you could say that, I will just take the ith row of the reconstructed matrix and use

that as the representation. Because I know that now this representation is better some of

those 0 entries have changed they have captured the latent semantics between the words.

So, this is definitely better none is denying that that this compression has given us better

representation because we are only keeping the most important information.

Now, if I do X hat X hat transpose, remember X hat is the reconstructed matrix. Then

again by the same argument the ig th cell actually gives me the cosine similarity between

the I th word and the g th word. And you can see that now the cosine similarity between

human and user has actually increased. So, this is just for me to convince you that we



have  learned  more  meaningful  representations.  So  now, what  do  we  choose  as  the

representation? I have still while computing this cosine similarity I have still used Xi

which is high dimensional which has the entire vocabulary as the number of columns as

a representation right.

So, there are 2 things coming out of here one is I really like this cosine similarity I see

that  it  has  improved;  that  means,  the  representations  were  computing  something

meaningful, but on the flip side I am still not happy because the representations are still

high dimensional. So, can you construct a wish list for me based on this. I would want

the same cosine similarity to be present as given by X hat, X hat transpose right, but I

would like to represent it by fewer dimensions, that is exactly what my wish list is. 

(Refer Slide Time: 11:01)

So, let us see how do we do that now for no reason I am going to construct a matrix W

word equal to U sigma what is u sigma it is the part of the SVD right the SVD told us it

was U sigma V transpose. So, I am just considering this matrix I am going to call it W

for no particular reason. Now, let me take X hat X hat transpose, I can write it as this is

that fine, now what is the next step?



(Refer Slide Time: 11:32)

What does this mean? I want an answer right, this is that aha moment should be there or

otherwise there is no point. What is how many rows are there in W? The same as the

number of words in our vocabulary; what is the dimension of each row? K. So now, W

word has low dimensional representations for the words in the vocabulary, but while

doing  this  what  have  we  not  sacrificed  the  cosine  similarity.  The  cosine  similarity

obtained by this is actually the same as this, do you get that; how many if you see this is

very, very important? That if you have not understood, this everything is meaningless. 

So, you see how from SVD we got a low rank or a low dimensional representation for

the words right, W word is just to be clear k and k is very, very less than V right. So now,

we  have  representations  for  words  which  are  much  smaller  they  are  no  longer  V

dimensional  remember  in  practice  this  k  would  be  of  the  order  100,  200,  300  and

remember your vocabulary was of the order 50 k 1000 k and so on, right?

So,  the  huge  reduction  that  you  have  got,  and  you  have  still  been  able  to  learn

meaningful  representations  which  give  you  better  similarity  between  related  words,

right ?
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So, conventionally W word which is U sigma and belongs to m cross k. So, I am sorry

for messing this up, but I  have used m n and V are interchangeably. So,  you would

understand it from context that m is V. And the other matrix which is V is known as the

W context matrix right what is the size of W context n cross k or k cross n, right?

That  means  it  has  the  representations  for  all  the  context  words  and  W word  has  a

representation for all the target words right. So, we had these words on the rows and the

context words on the column. So, W word has the representations for the rows and W

context has the representation for the corpus. 

So, this what we have seen so far, and this is where we learn today; is what a NLP was 6

years  back  right  before  the  advent  of  deep  learning.  If  you  wanted  to  use  word

representations this is what you would do you would do con construct a co-occurrence

matrix  try  these  tricks  of  PMI PPMI positive  negative  0  and  all  those  things  those

heuristics. Then do a simple SVD retain the most important 100 200 dimensions and

treat that as word representations and use it for whatever you want to do.

Now, what needs to be seen is, what happened with deep learning and how have this way

of computing word representations changed over the past few years, right? So, that is

what we are going to see in the next lecture right.


