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The  next  one  is  a  bit  tricky  so,  the  third  solution  is  to  use  something  known  as

Hierarchical Softmax. This is a bit counterintuitive in the sense it is a very smart trick,

but it is not something which is very obvious. So, just pay a bit attention on this it is a

neat way of handling this large vocabulary thing. And this I think used in various and it

will be applications, where speed is important not often, but wherever speed is important.
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So, this is what our original network was. This was the either you take it as a skip gram

model  or you take it  as a continuous bag of words model,  right.  Let  us take it  as a

continuous bag of words model.

You had a word as the input, and then you had this large prediction, and you had this

softmax computation which gives you the probability, and you are trying to maximize

this probability for the correct word, right where V w is the correct word?
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Now, instead of this the hierarchical softmax says that you construct a binary tree such

that your tree has how many nodes? V nodes, it has one node corresponding to every

word. And there exist a unique path from the root node to every leaf node. Every leaf

node corresponds to a word and there is a unique part from the root node to leaf node. Of

course,  there will  be overlapping things  for example,  for this  word the path is  these

nodes, and for this word also the path is like there is some overlap in the path.

But for every word there is a unique path, how many if you get that set up. Now let lw 1

lw 2 up to lw p be the nodes on this path. So, I am calling this as lw 1 lw 2 lw 3 sorry,

sorry, sorry, sorry yeah actually it is. So, actually this is l on 1, l on 2, l on 3; that means

the third node on the path of on, the second node on the path of on and so on, right that is

how it is going to be and let pi w be a binary vector
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. So, what is the size of pi w actually binary tree log of v, right? So, the size of pi w

vector is going to be log of v. So, if there are 8 leaf nodes, you will have 3 nodes as the

size of the vector. So, for each of these things, this vector takes on a value 1 so, here the

value would be one, because the path branches to the left if the path branches to right,

then the value is going to be 0, right. So, for every node or every word I have this way of

uniquely defining it is path, I can say that the path is 1 0 0, is that fine? For the word on

the path is 1 0 0, if I consider some other word the path would be different, is that fine?



And of course, I have assumed there are only 8 words here, right that is why this holds if

there are either otherwise I would have a vector whose size is log v, right now my V is 8

so, it is just 3.
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Finally, each of these internal nodes is associated with a vector. So, I have u 1 u 2 u 3.

So, how many of these would I have? If there are V nodes at the leaf, how many non-leaf

nodes do you have in the binary tree, V you all know this, right?

So, if you have V nodes at the leaf then you will have V nodes internally. So, for each

internal node, I have a vector associated with it. So, how many vectors do I have in all?

U V and my input side is still the same, right I have this w word or w context depending

on whether it is a skip gram or by or continuous bag of words model. How many of you

get this set up? Why we are doing this is not clear? But at least the setup is clear, what

we are trying to I mean what is the setup is clear, right.

So, how many parameters does this model have? Is it same as the bag of words model or

less than the bag of words model or more than the bag of words model? This is how you

will think, you will see how many input parameters do the poo 2 models have, how many

output parameters to the 2 models are input parameters, same output parameters, how

many vectors do you have? U 1 to uv each of size k, same as the original model, right it

is just as an original model I had put everything inside as w context which was k cross V

right. So, it is the same number of parameters, is that fine? Everyone gets that.
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So, the total number of parameters in the network is the same.
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Now, for a given pair w comma c, which is the correct path, we are interested in the

probability p of w given vc, nothing great about this it is the same as I have been saying

always that, we want the pa probability of w given c, what we are going to model as w?

Given vc, because we c is the representation of c. And we model this probability now as

the following thing, why does this make sense? You just assume this is on, and these are

on k s right. So, on 1 on 2 on 3, why does this make sense?



I will get the word on at the output only if the first element on the path was pi on 1 and

the second element on the path was pi on 2 up to the k th element on the path was pi on

k. How many forget that? Please raise your hands, right. So, that is how we are modeling

it. Is it ? But what about pi on 1, pi on 2, pi on k, how do you model that? At least this

form is clear to everyone, right if it is not let me know. Because then you not understand

the rest of the stuff, yeah.

So now see that modeling part is always in your hands, right? You know that you want

you are interested in a certain probability; it depends on you how to model it. So now,

what you have done is you have con constructed a binary tree. Now I am interested in p

of on given some word vc, right or some word vector vc. Now I can say that, but the way

I am thinking about this is that, I get the word on only if the first if I started from the root

node, the first vector took on the value 1 or the first branch took on the value 1, the

second branch took on the value 0, and the third branch took on the value 0. So, that is

exactly what I am saying here, right?

It is a probability that the first turn that I took was a left turn, then a right turn then a

right turn, yeah the path is you have constructed the binary tree, and the path is fixed

now for all the words. How to construct the binary tree is a separate thing, but the binary

tree has been constructed and every word has a unique path associated with that. So, that

word will  occur only if  that  path is  executed,  right.  So,  I  am just  trying to find the

probability of that path being executed.

Now, I need to tell you what does each; so, how many terms are there in this product? K

terms, right how do I estimate each of these k terms is what I need to tell you, can you

think of it? How would I model each of these probabilities, remember that every node

has a vector associated with it? How many if you can think of an answer? I hope I are

you saying what I think you are saying.
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So, this is what I will do. So, as I said for the on example this is what you want, this is

the path that you want to be executed.
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And I am going to model it as this.

So, getting a left turn, I model it using this that dot product between the original word

vector which was the input word vector which was vc, and the node representation of the

node associated with that particular node. Does this make sense? So, I will tell you what



we are trying to do. So, this path was clear that the probability is going to be a product of

these probabilities. 

Now I want how do I get each of these probabilities. So, that is again in my hand, right, I

am going to  say that,  I  am going to  train  my parameters  vc and ui  where ui  is  the

parameter  corresponding to  every node.  I  am going to  train  it  in  a  such a  way that

whenever I want this to take on the value 1, this should be close to 1, because I will set

up my loss function accordingly, we will see the loss function.

But I am saying that whenever I want the probability to be equal to 1, I am going to use

this to computed. And alternately when I want the probability to be 0, I am going to take

1 minus that which is just this, is that fine? Okay, let us go ahead a bit and then we will

come back if you are still lost, right.

So, what does this actually ensure? This ensures that the representation of a context word

vc will have a very high similarity with the node ui if the path takes a left turn there, and

it will have a very low similarity with the node ui if the path takes a right turn their. How

many if you get this part? Based on if you assume that this is how we are going to model

it, when is this going to be high? When the dot product between vc and ui is high. When

is this going to be low? 

When the dot product between these 2 is look right there is a negative, yeah. So, we,

sorry I or rather when is this going to be low, right. So, you get that, so, it is coming so,

the word representation which is vc which is this guy would come to the re come close to

all these representations, or move away from them depending on whether you want to

take a left turn there or a right turn there, ?

Now, what would happen to words which appear in similar context? The same thing that

we have been discussing so far, right they will come close to the node representations

which are along the path, right is that fine? So, this is the context representation, right?

This is actually you are representing every context word by these 3 representations. Now

if a word appears in the same context, it is representation is going to either come close or

move away from these representations, right. So, words appear in the same context, if

you have cat and you had sleep here, then cat has to come close to this it has to move

away from this, and it has to move away from this. Is that clear? That is how we have set

up the probabilities.



Now, instead  if  I  had  dog  and  again  you  had  the  context  word  as  sleep.  Now the

representation of dog also has to go close to this. It has to move away from this, and it

has to move away from this. So, in effect again the same thing is happening that the

representation of cat and dog are moving in the same directions. So, they will eventually

come close to each other, how many if you get this intuition?
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And how many computations do you need now to compute the probability of this. So,

earlier you acquired that complex softmax computation, how many computations do you

need?  Now  you  definitely  need  these  many  computations.  And  each  of  these

computations requires a sigmoid over or dot product, right. So, that is much much lesser

than so, you just need these many dot products as compared to your expensive softmax

computation earlier.

So, you see how you get the savings using the hierarchical softmax. So, this is as I said

this is not very intuitive it is like a really smart trick, and it takes time to get your head

around it, but I am sure if you go back and look at the slides you will get it, right? If it is

if you have just got 50 percent of the idea here that is typically how it happens every

time, but and I probably not figured out a better way of teaching this, but once you go

back I am pretty sure that you will get to understand what is happening, right.

So now the question is how do we construct a binary tree. Anyone has any thoughts on

that? Do we need to ensure certain things while constructing the binary tree? Okay, I will



ask this as a quiz question, just note that. There is some subtlety here ah, in practice this

is what is done. You just randomly arrange the nodes on the leaf nodes, and then you just

construct a binary tree from there right.  So, you have distributed all  your leaf nodes

randomly, and on top of that you have constructed a binary tree. My question is there a

problem in doing that which I will ask you on.


