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Ok.  So  now, we  will  go  to  the  next  module,  this  is  for  the  camera  and  this  is  on

Convolutional Neural Networks.

(Refer Slide Time: 00:17)

So far, we have done what we have just talked about a convolution operation, you just

taken some input boxes and converted them to output boxes, what does this anything of

this have to do with neural networks? I keep saying that is a course on neural networks

right. So, everything has to link to that. So, what is the connection?

So, we will try to understand this by taking the example of image classification and I will

use the same trick to get everyone’s attention. So, the next few slides are going to tell

you the difference between machine learning and deep learning ok. So now, everyone

will pay attention. 



(Refer Slide Time: 00:49)

So, this is the task you have give given an image and you want to classify it into one of k

categories and I am considering 4 categories here car, bus, monument, flower ok. What is

the simplest thing that you can do? Suppose this is a 20 cross 20 image you know the

simplest thing. 

Student: Sir.

Given on the slide; you will just take this as a 400 dimensional input feature vector right

and you will treat it as a 4 class classification problem. Train some multiclass SVM or

anything on that right. So, you have a simple input so, you are given some 1 million

images, all of these are 400 dimensional and they come from 1, 2, 3 or 4, these are the 4

classes, which is car, bus, monument and so on. 

 (Refer Slide Time: 01:43)



So, you can just treat this as an input feature vector and do your classification right that

is the simplest thing that you do or else what you could do is; you could do some kind of

feature engineering right, you could say that actually this entire blue sky is not really

helping me in deciding anything, these entire green lawns and all this is not helping, if

monument, car, bus and flower are the classes, what I care about is the shapes, I do not

care about the details inside the shapes, I am not trying to decide whether the car is of a

blue color or what model the car is and so on right, all I want to see is that this particular

shape of a car is present or not?

Now, what kind of filter gives you the shape of the image?

Student: (Refer Time: 02:16).

Edge detector right so, I could use edge detector. So now, this is something that I have

used based on my domain knowledge, that for these 4 classes actually, just detecting the

shape is important. So, I will ignore everything else. So, there is a lot of details there

right. So, I have actually sparcified my entire input, I have just looking at the edges in

the input and now this is a better refined feature as compared to the earlier feature, how

many of you agree that this is a more refined feature representation right. 

But this was handcrafted, I actually hand coded the edge detector kernel, because I knew

that it is 8 at the center and minus 1 everywhere else right, that is how I thought of it that

that is what an edge detector is or at least I read about it somewhere right. So, that is how

you would do it. So, this is feature engineering. 



So, what is this? This is how you do machine learning right, you take an input you do

some feature engineering and then you train a classifier on top of that, but now you could

become even more creative with the feature engineering and that is what the computer

vision  community  was  doing  largely  before  2012.  Come  up  with  different  ways  of

capturing better and better features from images. So, too popular in features from that era

and that is I am just talking about 2012 not some like 500 years back, but from that era

was SIFT and HOG features, which actually tell you how do the gradients of these pixels

change across the image right. 

So, this is again try to capture something like how, what is the variation in the image

from pixel to pixel right. So, that is the essence that how is you do not care about these

entire blue patterns, because they are just telling you sky it is redundant right, if you have

seen some 10 pixels or 20 pixels, which has sky you know that a large part of it is going

to be sky.

So, these try to capture some abstractions from the image and these are better than the

edge detectors and these features were extremely popular. So, what you would do is you

take your original input, this is a deterministic algorithm, you apply the HOG algorithm

or the SIFT algorithm and it gives you a transformed representation for the image and

you can use this transform representation to do classification. And a lot of work prior to

2012, 2011 show that these features work extremely, well across a wide variety of across

a wide variety of image tasks ok. 

So again,  what  was happening here? This  was feature  engineering  because someone

realized that what I care about is this gradation in the input images and I can capture this

by  this  nice  algorithm called  SIFT or  HOG of  course,  someone  came  up with  that

algorithm, but it is still kind of feature engineering right. 

So, this is how the learning is to happen is you are given some input, you do a static

feature extraction no learning. So, feature extraction is deterministic you take the input

pass it through one of these algorithms; either the edge detector or the blur detector or

SIFT or HOG and you get some representations for the input. And the only learning that

happens is on top of this transformed input. So, you now have a transformed input and

on top of that you are going to train a classifier and you are going to learn the weights of

the classifier. So, the only thing that you learn is the weights of the classifier.



(Refer Slide Time: 05:25)

So, that is  equivalent  to learning only the soft  max layer, in  case of a  feed forward

network that is the output layer right

Now, instead of using these so, this is the question instead of using these handcrafted

kernels or features, such as edge detectors or blur detectors or what not; can we learn

meaningful kernels in addition to learning the weights of the classifier, do you get this?

Question at least, whether the answer or not, but you get the question. So, what I am

asking is that why should I hand code this edge detector ok.

(Refer Slide Time: 05:55)



Why not have after what is the edge detector; it is like a 3 cross 3 matrix right and I have

seen tons of such matrices in my feed forward neural networks, I have dealt with very

large matrices, which were called parameters of the network. 

So, why not have a 3 cross 3 or a 5 cross 5 or whatever dimensional matrix and try to

learn, what should be the right values in this matrix instead of hand coding the edge

detector matrix, do you get the idea, how to do that as still far, but at least do you get the

idea that is what I am we are trying to do ok.

So, now instead of just learning the weights of the classifier, we also want to learn the

weights of the kernels; that means, instead of using handcrafted features, I am now going

to;

Student: (Refer Time: 06:37).

Learn the features. So, that is the difference between deep learning and machine learning.

So,  you  had  handcrafted  features  there  and  now  you  are  going  to  learn  the

representations also by treating them as additional parameters in your network, how you

will do that; we will see and it is very simple given that you understand, how to train

feed forward networks.

(Refer Slide Time: 07:01)

But then why the stop there, why just have one feature representation for the input, can I

learn multiple such kernels right. I could have one 3 cross 3 matrix, which learned this



first representation another, 3 cross matrix, which learned this another representation and

yet  another  3  cross  3  or  5  cross  5  or  7  cross  7  matrix,  which  learns  this  different

representation. So, instead of learning one static representation from the input, I could

learn multiple representations from the input.

 (Refer Slide Time: 07:29)

In fact, why not why just stop there, what is the next thing that I am going to try to do?

Multiple  layers  of  features  right  so;  that  means,  at  the  first  layer  I  learned  this

representation, now I could take this and try to learn an even more abstract representation

from there and then keep doing this to make it deeper and deeper do you get this ok.

So,  at  every  stage  now  I  have  these  parameters,  which  are  helping  me  learn  the

representation of the input, I am learning multiple representations at every layer and then

having multiple layers of these representations right and everything is learnable end to

end ok. So, you get the difference between deep learning machine, learning now there is

no  handcrafting  of  features,  you  are  learning  the  feature  representation.  I  know,  I

understand there is some confusion about how you would do this.



(Refer Slide Time: 08:15)

But we will get to that just trust me on that that you will be able to figure out how to do

this ok.

And all of this we have some weight matrices here, we have some weight matrices here,

these are the layer 1 weight matrices, the other layer 2 weight matrices and these are the

output layer matrices and you see this layer wise, arrangement of these weight matrices

and they are very comfortable  with this,  because we have done feed forward neural

networks, where we had these multiple layers and we knew how to back propagate from

the last layer to the first layer. 

Now, what I am trying to say is that, I would like to adjust these weights of filters in such

a way that my classification loss is minimized and what is the loss function that I am

going to use here?

Student: (Refer Time: 08:51).

Cross entropy, because this is a multi class classification problem ok. 

 (Refer Slide Time: 08:59)



So, just hang on with this intuition and we will make it more clear fine.

So, such a network which has these multiple convolution, learned convolution operations

at every layer and then multiple such layers is known as convolutional neural network.

(Refer Slide Time: 09:09)

 Ok fine. So, get this idea that we need to learn kernel filters by just treating them as

parameters of the classification model ok, but how is this different from a regular feed

forward neural network? You could have taken a regular feed forward neural network

and I will show it to you on the next slide and what is the difference between that and a

convolution operation?



(Refer Slide Time: 09:29)

So, if you understand that then, you would be done for this lecture.

So, we have an input. So, let us say now, I will take back the eminist case, where you are

given an input as an image and these are digit inputs and you want to classify them into 1

of 10 inputs and I am going to assume that, my input is 4 cross 4; that means, I have 16

pixels ok. 

So, the simplest thing that, I could have done or the feed forward neural network way of

doing this is that, I would just flatten out this image, I will get 16 inputs, I need 10

outputs at the output layer. So, I have an output layer, which will have 1 of these 10

classes and then, I add as many layers that I want in between ok. This is what a feed

forward neural network would look like and if I consider any one neuron in the first

layer, it  takes  inputs  from all  the 16 inputs right,  that  is  how a feed forward neural

network is, you have these extremely dense connections, where every output depends on

every input at every layer ok. 

 (Refer Slide Time: 10:31)



Now,  so,  this  is  the  same  story  which  I  have  said.  Now,  let  us  look  at  what  a

convolutional neural network looks like. So, again you have these 16 inputs, I am using a

2 cross 2 convolution ok. Now if I use a 2 cross 2 convolution, if I place it here, then I

am using pixels  1,  2,  5 and 6 and computing  one value.  So,  you see the difference

between this and a feed forward neural network, in a feed forward neural network h 1 1

would have depended on.

Student: (Refer Time: 11:03).

16 values; 16 inputs and a convolutional neural network it is depending on.

Student: (Refer Time: 11:09).

Only 4 neighbors and similarly h 1 2, I am using a stride of 2 by the way right. So, I am

not placing the filter here, I am just skipping one step, h 1 2 would depend on pixels 3 4

7 8 and so on right.

So, one thing is clear that as opposed to a feed forward neural network, you have sparser

connections here is that clear and why do we have sparse connections? Because we are

exploiting our knowledge about images that in an image, you do not really care about the

interactions between on between a pixel at the leftmost left top most corner and the right

bottom corner right. So, there is sky here, there is ocean here or there are trees here, you

would want to capture the neighborhood around that pixel not really capture it with the



entire image, that is why you do not want all of these 16 inputs to contribute, you only

want a small neighborhood to contribute do you get that intuition ok. 

 (Refer Slide Time: 12:13)

So,  this  is  the  first  property  of  a  convolutional  neural  network  that  it  has  sparse

connectivity ok, but its sparse connectivity really good? I just made a case for that. Now

I  am  going  to  counter  argue  right,  is  it  really  good  that  you  have  these  sparse

connections? Because you are losing out information right, you are using out interactions

between certain pixels. So, why is that good?

Student: (Refer Time: 12:29).

I am hearing a lot of interesting answers, but remember that you are always going to

have multiple layers ok. So, consider these 2 pixels, in the first layer these 2 pixels did

not interact, because h 2 only dependent on these 3 and h 4 only dependent on these 3,

there is no a there is no unit here which depends on both x 1 and x 5 is that obvious,

Because I am just using a window of size 3. 

But now once I go to the next layer, once I go to g 3; g 3 depends on h 2, h 3, h 4 here,

which in turn depends on x 1 x 2 x 3 x 4 x 5 right. So, even though at this layer x 1 and x

5 are not interacting with each other as you go deeper these interactions become obvious,

do you get that right. So, that is why you will always use a deep convolutional neural



network, where all the pixels get to interact at a deeper layer, but at the more image, it

layers you just want to capture the interactions between a neighborhood. 

So, it is like you take this neighborhood find out something, then take neighborhoods of

neighborhoods and then try to find out something at the next layer and keep continuing

in this layer, how many if you get this? Right ok. So, this is what sparse connectivity

looks like.

(Refer Slide Time: 13:43)

 (Refer Slide Time: 13:47)



Another characteristic of CNNs is something known as weight sharing. So, let us see

what it is? So, remember I had considered this 2 cross 2 kernel and I was placing it at

these 4 pixels, which is pixels 1, 2, 5 and 6 and I was pacing another kernel at these 4

pixels, which is pixels 11, 12, 15 and 16 right, these 4 pixels and I have used different

colors for them indicating that these filters  are different.  So, they are both 2 cross 2

filters, but I am assuming at the values inside them are different. Does this have to be the

case? Just think, what a filter is trying to do.

Student: (Refer Time: 14:27).

It is striding across the entire image at every location, I want to do the same operation

remember, when we are doing blurring or edge detection or sharpening I had the same

filter, which I was applying at every location. So, I want to see, what is the effect of this

filter throughout the image? So, I do not really want to change this filter; that means

these 4 weights would be the same as.

Student: pink weights.

The pink weights; how many of you get this? So, this is a question, do we want the

kernel weights to be different for different portions of the image? So, imagine that we are

trying to learn a kernel that detects edges. So, the same kernel configuration is required

throughout the image because, that is the kernel configuration, which will detect an edge.

(Refer Slide Time: 15:17)



So, you want the same kernel to be there everywhere. So, we are going to share these

weights, they should not be these pink and orange weights, we will just have the same

weights everywhere ok. So, this is known as weight sharing. 

So, now this is something ridiculous, if you think about it now how many weights do I

have in layer 1?

Student: (Refer Time: 15:33).

4 weights that is all that looks too less right it would lead to.

Student: (Refer Time: 15:39).

Dash fitting.

Student: (Refer Time: 15:42).

Under fitting because we have very few parameters so, how do I deal with the situation?

Student: (Refer Time: 15:45).

You will  have multiple  kernels  right.  So,  you will  have another  kernel,  which  takes

something else you will have one more kernel, which takes something else and you can

have as many such kernels right. So, the more the number of kernels will have you will

have that many into 4, as the number of parameters and that many outputs at layer 1, how

many if you get this? Ok good. 

So, these are the 2 important characteristics of convolutional neural networks, one is

sparse connections and the other is weight sharing ok.



(Refer Slide Time: 16:17)

 So, so far we have focused only on the convolution operation. Now let us see, what does

a full convolutional neural network look like or maybe I will do this next time, I think

this is.


