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So, let us continue a study of search algorithms for Finding Optimal solutions. And at the

moment we are looking at this algorithm called branch and bound which is blind search

algorithm, but unlike depth first search and breadth first search and did that we saw earlier

this one caters to problems where there are edge costs involved in the in the graph and

guarantees an optimal solution.
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So, we are moving on to now state space search. And so far we saw algorithms for blind

search or uninformed search which had no edge costs involved. The first algorithm we saw

was depth first search, where the deepest candidates are the best. And it dives headlong into

the search space optimistically hoping that it will reach the goal state.

The conservative algorithm was breadth first search where the shallowest candidates are

considered to be the best. And it stays as close to the start as possible. And it gradually wades

into the search space layer by layer which is why it guarantees that you find the solution with

the shortest number of hops. And we saw a depth first iterative deepening which was

basically depth first trying to behave like depth first search in its behaviour though it retain

the advantages of having lower memory cost.
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We also saw informed search algorithms, and we looked at the notion of heuristic functions.

And this is a recap of what we had done earlier. A heuristic function is a function which

estimates the distance to the goal. And this estimate is used to guide the search process. So,

the best first search algorithm candidates that appear to be closest to the goal are considered

to be the best, and it chooses the node with the lowest h-value in the hope of finding a

solution sooner. So, while breadth first search was aimed at finding a shortest solution when

edge costs are equal, best first search is aimed at finding the solution as quickly as possible.
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And then we started looking at branch and bound. So, what since we want to guarantee the

optimal solution, we want to work in a search space in which will not preclude any solution.

So, that if wherever the optimal solution is we are going to find it essentially. It could be the

state space in which a partial sequence of moves is extended as we will see today. It could



also be the solution space in which an abstract solution is refined as we saw with the TSP

example in the last time.

So, the basic idea is that you continue looking for a solution extend it or refine it, and there

have been people who have said that they have basically both the same thing. You can think

of extending a solution also as a kind of refinement until a complete solution with known cost

is available.

And it is the cheapest which means that no other possible solution with a smaller costs exist.

So, the basic idea behind branch and bound is prune those part of the search space which

cannot contain a better solution. So, in some sense, we are still trying to work towards the

solution. 
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So, let us look at the state space version of this and we look at a tiny graph again as we did

earlier, except that this time in our graph we have weights for the edges. So, for example, the

edge between S and A has a weight of 6, the cost of a path is the sum of the weights on the

edges in that path. Now, I have drawn this graph roughly speaking to reflect the distances, but

it may not be entirely accurate. So, go by the edge labels rather than by the actual placement. 

So, I try to draw the graph, so that the distances also look visually what we have indicated

them to be by edge basis essentially, so that is why the edge between S and C is longer than

the edge between S and B. Edge between S and B is 3 units, and between S and b C is 8 units.

The problem that we want to address is what is the status shortest path from S to goal. So,

when we say shortest path in this context, we mean the path which has the least cost some of

the edge weights, not the number of hops.
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So, let us see how this work. Each candidate is tagged with an estimated cost of a complete

solution. So, at all points, we are have in some sense the complete solution is in mind. In the

case of branch and bound, the estimated cost of the full solution is very simply taken to be the

actual cost of the partial solution. So, it is a gross approximation, but it is the useful

approximation because it helps find the optimal path. 

The algorithm that we have been following is still the same that refine the best looking partial

solution till the best solution is fully refined. And the version of this algorithm that branch

and bound implements extends the cheapest path partial path bound so far.
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So, let us look at how branch and bound works with this small graph that we have drawn.

Remember that the algorithm says extend the cheapest path essentially. And in our

representation, the search space will contain partial paths and each node in the search space



will be a partial path starting from S to that node essentially, S is a start node. Initially, of

course, we have only the start node and its edge cross and it is cost is 0 because that is why

you are at the beginning. And the basic idea is to extend the cheapest partial path.

So, when we expand S we get its 3 neighbours A, B and C, and the cost of A is 6, the cost of

B is 3, and the cost of C is 8. So, when we say that cost of a node essentially we mean the cost

of a paths from the start state to that node. In this case, there is only one edge. So, the edge

cost becomes a cost of the node, but as the graph grows as the search space grows the costs of

every partial path will get incremented essentially. So, keep in mind that each node in the

search space represents a partial path from S to that node.

So, we have three partial paths here from S to A, S to B and S to C. And we have indicated in

cyan or blue or green whatever you want to call it, the best node in the amongst the open

nodes. And every node that we have finished expanding, we will put in the closed as before.

So, we maintain both open and close as before. And as before we always pick up the best

node from the open which means that we implement a priority queue for doing that and

proceed till we have found the paths to the goal node. 

So, since B is the best node we have now expanded B n we have got the 3 children of B

which is S, A and D. Now, observe here that the labels against this three new nodes that we

have added well label of S is 6. 

It means it is a path starting from S going to B and then going back to S and that because the

edge weight is 3, it is 3 plus 3 which is 6, whereas, if you go from S to B to A, then the new

cost is 5. So, you can see that we have found two paths from the source or start to a one is a

direct edge which is a cost 6, and one is a path through B which is the cost of 5. 

Now, branch and bound the way that we are discussing it now implements every such partial

path as a distinct node in the search spaces essentially, hence always peaks the cheapest

partial path and extends it.
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So, here we have then we extend it the cheapest node A which are the cost of 5, and we found

new paths to S, B and D. S, B and D are the neighbours of A. So, again just to remind you the

new node B for example, which has the label which has the weight of 7 means that you have

gone from S to B and from B to A and from A to B back resulting in this total cost of 7

essentially. 

So, at this point, there are two nodes which appear to be cheapest which is A and S, both have

a edge cost of 6. And branch and bound will in some order expand both of them through

generate this new tree where you see the children of A and S on the left hand side. And at this

point, B and D, the green or cyan colour nodes have become the best. And the algorithm will

next proceed to expand them again in some order. 
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And what we get is this new graph in which remember that this D and this B was the new

node that we expanded. And all the parts going from these nodes are more expensive than the

earlier parts which existed. So, we have this node B with a cost of 8, and node C which is

with a cost of also 8 which are the best nodes. So, branch and bound will continue in this

fashion always picking the best nodes to expand.
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And eventually it will go through these nodes which I have highlighted in yellow. So, for

example, this node 11, A with cost 11, D with cost 11, D with cost 9 and so on and so forth.

You can see that it has found many different paths to the goal one is from S to C and C to D

which has a cost 16. 

It has also found another path with a cost 17, another cost with the path with the cost 14 and

so on. And only after it has finish expanding the yellow coloured nodes, finding longer and

longer paths will it eventually focus on the deepest path which is from S to B to D to G which

is of course 13.

So, at the moment as depicted in this graph, the nodes which we with which have been

highlighted with yellow in the cost with edges edge the partial costs that have been

highlighted with yellow are cheaper. Branch and bound actually first explore them before



picking up this node G. And it will when it picks a node G, it will be the lowest cost node.

And we would know that a shorter path cannot exist. 

(Refer Slide Time: 12:14)

Now, you would have recognized this that this is very similar to the Dijkstra’s algorithm for

singles so shortest path to all nodes which is a well known algorithm studied in Data

Structures course. And just to do a quick recap Dijkstra’s algorithm begins by assigning

infinite cost estimates to all nodes except for the start node. And it assigns the colour white to

all nodes initially. And it picks the cheapest white node and colours it black. 

The node that it has just coloured we relax do a process of relaxation which means it we

inspect all the neighbours of a new black node and check if a cheaper path has been found to

them. If a cheaper path is found, we keep track of the cheapest path. What Dijkstra’s

algorithm does differently from branch and bound is that it only keeps one copy of the node



unlike branch and bound which keeps many copies. And it keeps a copy to the parent node

instead of storing the entire partial path.
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So, let us see how this algorithm will work. Initially as before the start node is the cheapest

and it has a cost of 0, all other nodes as you can see have been labelled with the costs infinity

or some very large number if you are implementing the algorithm. And the algorithm says

pick the cheapest node colour it black, and relax the edges which means that we will look at

the neighbours of S which are A, B and C.
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So, this is what happens. Observe that I have used the colour orange. So, maybe orange is the

new black. So, think of orange as black in as far as Dijkstra’s algorithm is concerned. And at

an any point you I have indicated like in the branch and bound algorithm, the cheapest node

in open in cyan essentially. 

So, you can see that they are three, three white nodes or 3 nodes in open A, B, and C, with the

costs with respect to be 6, 3 and 8. And B is the cheapest. And from each node there is a

parent pointer to where it came from. So, from B we have this parent pointer to S, and

likewise for the other nodes.
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So, now it colours B as black within our cases orange and relaxes the edges for its

neighbours. You can see that at this point, it has found a better path to the node A. And the

pointer from A now points to B which means that the best paths to A is from the node B, not

from the node S even though it is only one edge essentially that is because we are counting

edge costs.
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The next node to be relax would be D at which point you will see that a path to the goal node

has already been found. But we are still not sure whether that is a cheapest path, because there

are nodes which are open. For example, C as a cost of 8 and if you imagine that that see that

the edge between C and G was let us say two units, then the path from S to C to G would

have been 10, and that is why at this point Dijkstra’s algorithm and also branch and bound we

will not pick the node G, but it will extend the cheapest partial path which in this case is the

node C.
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And after that E is still remaining with a cost of 10. So, what is the paths to E? The paths to E

is parent of E is D as we can see, and the parent of D is B, and the parent of B is S. So, the

paths to E is S-B-D-E. And that is a cost edge that is a cost of 10. Again if E to G was only

two units, then this would have been a cheaper path to the goal G. But as it is not. So, G still

considers D to be its parent because from there the path the cost of reaching G is 13 nodes.
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And finally, when the algorithm does pick the node G it has found the cheapest path to the

goal node. Now, Dijkstra’s algorithm is not designed to find the path to specific goal node. It

is a algorithm which gives the shortest paths to all nodes from the start node. And therefore, it

does not have nearly this sense of direction that we are interested in and we will move on to

that shortly essentially. 
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So, this is what I meant by saying that transient bound has no sense of direction which is also

which also applies to Dijkstra’s algorithm. So, it will keep exploring this part of the space

because these nodes are closer to the start node and it always extends the shortest path. So, it

will extend the path to this first, then maybe the paths to this and so on and so forth. And it

will spend a lot of time exploring this neighbourhood. 

Just imagine this is a village and all the small town, and then there is a village next door, and

then in a another village a little bit far away is your goal node, our algorithm branch and

bound will keep focusing on where it is essentially because those nodes are the closest nodes.

And it wants to be sure that when it finds a path to the goal, it will have found the shortest

path.
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We have seen that best first search looks ahead only. And it is possible that the best first

search algorithm may not be may not find the shortest path. So, in this case, if you see if this

is the as the goal node is shown and two candidates in open which are in contention which

has shown in cyan you can see that this node is closer to open to the goal. 

And therefore, the paths that it finds would have been the path which goes like this. And at all

points while assuming that this node is the one with the shortest path, but they have other

nodes which appear to be closer to the goal.

So, for example, this one, and then this one, and then this one, and then this one, and then this

one and that is how the algorithm will end up finding a path which is not necessarily shortest.



So, essentially we want to look for an algorithm which has this sense of direction that best

first has, but also guarantees that you find the shortest path. 

And the algorithm that we are going to look at is called a star and it combines the best

features of both the algorithms that we have seen branch and bound and best first and in fact,

also the Dijkstra’s algorithm. So, that is what we will do in the next session. 
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