
Artificial Intelligence: Search Methods for Problem Solving
Prof. Deepak Khemani

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Chapter – 05
A First Course in Artificial Intelligence

Lecture – 42
A*: Leaner Admissible Variations

(Refer Slide Time: 00:14)

So, welcome back, we continue with our study of is A star and its variations. We have seen

that we can view the whole thing in a generalized framework, where f of n is equal to g of n

plus w into h of n and we saw some impact of the weight in the sense. 

Now, let us focus on Admissible versions Variations of A star which are leaner in terms of

space requirements. And, we will see later on that in this century and perhaps a little bit



earlier; the need to explore very large graphs was presented by problems that came up from

different areas of research essentially. 

In particular, the task of sequence alignment from bioinformatics and we will look at that very

briefly before we in the next session essentially, before we move on to other variations. So,

but we first look at admissible variations which came in the last century and the goal you

must remember is to cut down on the space complexity of the algorithm. 

(Refer Slide Time: 01:28)

Now, this is something that we have already seen. We saw the two versions of A star: A 1 and

A 2, where one heuristic function h 2 of n was more informed than h 1 of n. And, we saw that

the space explored by A 2 is contained in the space explored by A 1, which means that it will

not only finish faster, it will also use up less space. 



Then in the last session, we saw that we can use weighted A star which can further shrink the

space that is explored by the algorithm. But, we have the danger of losing admissibility as

was illustrated in the example that we saw in the last session. 

(Refer Slide Time: 02:22)

Now, let us look at variations which are still admissible essentially. And we want to cut down

on space, because empirically and this is something that we this is a graph that we saw when

we were looking at best first search. We said that thus the open list for best first search also

tends to be exponential in nature; even though it may not be as bad as that of breadth first

search. 

Breadth first is definitely exponential, breadth first was linear and best first we said that by

and large tended to be exponentials. But, we also made the observation that its performance



depends upon how good the heuristic function is. Then, we saw that A star in general needs

more space than best first research. 

And, we saw that in the last session when we compared A star with best first search and not

only with best first search with branch and bound and nw A star. So, A star in general needs

more space than best first search and best first search itself can tend to be exponential, if the

heuristic function is not particularly good. So, let us look at variations of A star which require

less space. 

(Refer Slide Time: 03:37)

So, we want to save one space and this will be our focus for the next few sessions. So, this is

what I just said that while studying best first search we have observed that the space

complexity of the algorithm is often exponential. And, it really depends upon how good the

heuristic function is essentially.



This led us when we were studying best first search to look at local search algorithms. We

started with hill climbing then we went on to beam search and Tabu search and simulated

annealing. So, this should be Tabu search and simulated annealing. And, later on we also

moved on to population based methods like genetic algorithms and ant colony optimization. 

But, we also saw that these algorithms do not guarantee optimality, though algorithms like

genetic algorithm, simulated annealing ant colonial optimization often give you very good

solutions. But, at the moment we are focusing on guaranteeing optimality. So, the question

we want to ask is are there space saving versions of A star that are also admissible? 

Perhaps at the expense of time complexity and if you remember, what we did when we

studied depth first iterative deepening? We said that we can trade off space versus with time

and get a algorithm which requires much less space. And, the first algorithm that we will see

is in fact, an extension of DFID or Depth First Iterative Deepening. 



(Refer Slide Time: 05:10)

So, just to recap, we started with doing depth first iteratively deepening by first writing an

algorithm called Depth Bounded DFS. Depth bounded DFS simply says that there is a bound

beyond which depth first search cannot go and you simply do depth first search within that

bound. The boundary showed in this example in a circle which is shaded. So, you do depth

first search only up to that bound, whatever the bound is d in this case and it requires linear

space. 

Why? Because, it is depth first search and we have seen that the open list for depth first

search grows only linearly. But, it is not complete; now that as you can see if it is going to

stay within this bound, it is not even going to find a path to the goal, forget about carrying

taking a shortest path essentially. So, it is neither complete nor admissible which is a property

of depth first search. 



(Refer Slide Time: 06:12)

But, depth first iterative deepening essentially what it does is that, it does a sequence of depth

first searches and in every iteration it increases the depth bound by 1 essentially. So, this is

was this was depicted in this here that after you have done the depth DepthBoundedDFS up to

a certain depth if you have not found the solution, increase the bound by 1 and then again do

DFS. 

So, it was a sequence of DFS searches of increasing bound. A sequence of depths bounded

depth first search because each of these therefore, searches was bounded by depth. And

therefore, they required linear space because they were essentially depth first search. 

But when the path to the goal is found in some iteration, it is the shortest path because

otherwise it would have found the path in the previous section; if there was a shorter path to a



goal. So, in that sense the behaviour of DFID was like breadth first search, but internally it

was like depth first search; of course, we had to do a sequence of searches.

(Refer Slide Time: 07:22)

And, we had done a little bit of analysis about how much is this extra work that we do in

DFID. And, we here come to the conclusion that for a space search space which grows

exponentially, the extra cost was insignificant essentially. It was only b over b minus 1 times

the value of what breadth first search would have done essentially. 



(Refer Slide Time: 07:49)

So, it is clearly a motivation for devising a new algorithm and this new algorithm is called

iterative deepening A star. The algorithm was given to us by Richard Korf in 1985. 

And, it is designed to save on space by doing a series of depth first searches of increasing

depth exactly like DFID. Unlike DFID which uses depth of the load as a parameter.

Remember that when we were studying the DFID and depth first search and best for search;

we did not have edge cost. 

So, our notion of optimality was the length of the path, but now edges have cost associated

with them. So, length of the path may not be the right IDA as we have observed, that we have

to have a different way of measuring the cost of the solution found. So, DFID was an



extension of breadth first search or rather it was depth first search trying to behave like

breadth first search. 

In a similar manner IDA A star is going to be depth first search trying to behave like A star

essentially. And, what it will do is that it will use f-values to determine how far the depth first

search should go. So, in all these variations DFID, IDA star; it is essentially depth first

searches of increasing bound. It is just that how the bound is determined is different in the

two cases. 

IDA A star initially sets the bound to f of S which is equal to h of S, if you remember because

g of S is 0. And, we know that h of S is an underestimating functions which underestimates

the optimal cost and so, it will never find solution. Depth first search will never venture into a

solution which is more expensive than the optimal solution. 

Because, it starts off by looking at depth only where at best a solution can be found, at best h

of S can be equal to h star of S. And if that happens will be the case, then it will find the

solution. In subsequent cycles, it extends the bound to the next unexplored f-value. 

Now, this is different from DFID, in DFID we just increase the depth by 1, but here we are

extending the path length to the next node, that you have not explored (Refer Time: 10:11). 



(Refer Slide Time: 10:15)

We will see that this may cause problems of its own, but let us first look at the algorithm

itself. So, iterative deepening is A star has stars with a depth bound of f of S. And, exactly

like in the previous case, it does depth first depth bounded depth first search. If the search

fails to find a path to the goal, it increases depth bound. But, this time it increases it to the f

value of the next cheapest node that was not expanded in the last round. 

So, it does a sequence of with increasing depth bond, thus requiring linear space as before;

everything else does not change. The argument which says that it will find an optimal path is

the same as the argument that we gave in DFID. Because, when a path is found in some

iterations it must be the shortest path; because otherwise it have been found in the previous

iteration. 



So, this is how DFID is a variation, IDA star is a variation of DFID. DF DFID was depth first

trying to behave like breadth first because breadth first gave you the shortest path in terms of

number of ops or the length of the path. In IDA star the same thing is happening increasing

number of depth first searches. 

But, now it is trying to behave like A star because, it will find us the shortest cost path; where

the cost is the sum of the edges and some of the cost of the edges in the path that is found ok.

(Refer Slide Time: 12:00)

So, if you were to look at the space explored by IDA star, this diagram shows you that at any

given cut off or depth bomb which is shown by this grey coloured oval halo. The space that

IDAs are explored is shown in this, green coloured nodes. And, you can see that there are



many ways of reaching different nodes. But, what IDA star will do is that it will do a depth

first search which means it will go down this path. 

Then it will backtrack go down this path, then it will backtrack go down another path and so

on. So, essentially it will do depth first search, but it will stay within this boundary. So, this

green node is not the list of closed nodes, it is a list of nodes which have explored by DFS.

And, we have said that DFS will require only a linear amount of space. 

The nodes in the yellow are the ones which were generated, but which were outside the bound

and therefore, they were not inspected. And what IDA star will do that it will take the

cheapest of those nodes; for example, in this example it could be this one. And, it will extend

the boundary to that f value of that node. 

So, in that sense it is a little bit different from DFID. DFID extended the depth by 1, IDAs are

increases the bound to the value of the cheapest unexplored node; f value of the cheapest

unexplored node. 



(Refer Slide Time: 13:47)

Now, that can lead to problems of its own, as you can imagine. Even when the state space

grows quadratically which means that you are looking at a city map or something, where the

area increases as your search space increases which is the square of the length; then the

number of parts to each node will grow exponentially. Because, there are its a combinatorial

problem and we will see that this same combination problem will crop up; when we are

talking about sequence alignment. 

And, which is one reason why we will focus on space saving algorithms. Because the number

of combinations goes exponentially, the depth first search algorithm and we saw this in the

example of DFID; can explore many different parts to the same node especially when the

CLOSED list is not maintained. And, we had argued that if you maintain the closed list, then



in DFID we cannot guarantee the optimal path. So, we had said that in the DFID you should

not maintain the closed list. 

If you are not maintaining the closed list, then repeatedly visiting the same nodes again and

again is going to be a problem. But, it is also a problem that IDA star extends the path only to

the next unexplored node. Now, in the case of DFID because, it was depth that we were

looking and we could think of the tree as a layer tree and you go to level 1, then to level 2,

then to level 3 and so on. 

At each level you would include many new nodes, but in the case of IDAs star because we are

only incrementing the value to the next f value. It is possible that only 1 or 2 or 3 nodes may

come into the ambit of the next cycle which means that the number of cycles may be very

many easily. So, this is a major problem with IDA star. And, we have had students who have

implemented IDA star. 

And, they have observed this behaviour that the number of cycles which happens in a

randomly generated graph can be quite large essentially. So, one option that we can look at if

you are implementing IDA star because, after all IDA star has the advantage of giving you

linear space is to not increment it to the next f value, but choose some value constant and say

I will increment it by that much. 



(Refer Slide Time: 16:12)

And of course, you may have to pay a price in terms of optimality. So, this diagram depicts

this situation, where you are incrementing the bound by certain pre decided value delta. And,

then you will do depth first search by this part. So, what does this mean? It has this

implication that if it is again searching like this going down this path. In fact, in this case it is

going to be like going up to the new bound. 

It may first hit this goal node which is actually less which has a greater cost than another node

which would have occurred later, because the search is flipping in this direction. And, it may

miss out on that this particular node on, it will miss out on this node, but it will find this node

which is actually a little bit more expensive. But, the extra cost is bounded by delta and if you

are willing to pay that much price then our IDA star is going to speed up much more than the

basic IDA star algorithm.



(Refer Slide Time: 17:13)

But, Richard Korf the person who gave us IDA star also gave us a new algorithm called

Recursive Best First Search. And, we have seen that IDA star has linear space requirement

because it is the first in nature, but it has no sense of direction; again because it is simply

depth first in nature. Recursive best first search is an algorithm given to us by Korf in 1991. 

And in his words he says that, “RBFS is a linear-space best and best-first search algorithm

that always explores new nodes in the best-first order. So, in some sense it has a sense of

direction and he observes that it expands fewer nodes than iterative deepening and by this he

means iterative deepening A star with a nondecreasing cost function. ”

So, RBFS is a little bit like hill climbing with backtracking, that you go down some path

requiring linear space; because hill climbing requires linear space. Hill climbing requires

constant space, but if you maintain the parent pointers then you would, if you maintain the



path backwards it would require linear space with depth. And, you backtrack if no child of the

current node is the best node on OPEN essentially. 

So, it is a bit like hill climbing where the candidates have been of the parents have also been

kept alive, they have been kept in open. And, for the current node if the neighbours does not

contain the best node, then you backtrack. But, actually backtracking would mean increasing

amount of space, RBFS does not backtrack; it does what they call as rollback. 

By rollback you mean you just undo what you did and go back to some ancestor. And, the

ancestor is the one which is a sibling of a node which has been marked as the second best

node essentially. So, rolling back by itself would not help because then you would come back

to the same path because the values h, f values are the same. 

So, what RBFS does is that it backs up the lowest value for each node and updates the values

of its parents as it rolls back. So, this is a key feature of RBFS that it rolls back and updates

the value. So, let us see that with an example; we will not discuss the algorithm in much more

detail here. 



(Refer Slide Time: 19:43)

And, let us say this is the case where the nodes in pink are they depict the paths, that is

generated by A star. So, you see we start with the value of 50, these are f values. And, we will

see in the next session that typically f values tend to increase as we go towards the goal. But

we will do this a little bit more formally; especially under some conditions that we will study

which is called the monotone criteria. 

But, in general the f values tend to increase because they tend to become more accurate;

because the contribution of h decreases as you are going closer to the goal. So, this is a value,

you start with a value of 50, then you have 3 children; 59, 50 and 82, you choose 55 there and

you mark 59 as the second best this thing. So, this one is the second best and it is marked and

we have it in this colour. 



 Then you keep progressing, you generate the children of 55. You have 61, 61, 56; you choose

the best as long as it is better than the second best. This process goes on, you come down to

another 56, then 57, then 58. And then suddenly when you generate the children of this node

58; you find that all of them are worse than the second best node 59. 

Now, remember that this observe that the space requirement here is linear, because at every

level as you go down you just add a constant number of neighbours which is the what depth

first search would have done. Unlike, depth first search what this one is doing is that it has a

sense of direction. So, it is not going to the left most part, but it is going to the path which is

the which is guided by the heuristic value. 

So, in that sense is a little bit like hill climbing, but it is more like depth first search in the

sense that it maintains all the parents and their children. And, in this particular example when

it finds that hill climbing would not have proceeded. Well, in the sense that it is not like hill

climbing because the neighbours are, the next nodes are actually increasing f values and we

have seen that. 

So, that condition that the neighbours have to be better than current node is relaxed here. You

move to the best neighbour, but RBFS also keeps the second criteria, which is that you must

be better than the second best node that we have seen so far; in this case which is a value of

59. Now, all the 3 nodes generated here at the bottom, they have a value of 63, 61, 62. All 3

are worse than the second best. 

So, RBF simply rolls back this entire search tree, but when it rolls back it updates the values

of its parents as it does so. And, it backs up the best value for every parent. So, this last node

58 now becomes 61 because, 61 is the best value that it can find amongst this children. 

Then between 64, 60 and 61, this 60 gets backed up to its parents. So, 57 gets updated to 60

and so on. So, this process goes, this 60 is again propagated back and propagated back and

propagated back all the way up. 



So, this node which was 55 has now become 60 and search resumes from this point onwards.

So, at this point when it is rollback you can see that the middle node has become a value of

60. Now, the left node has a value of 59 and so, the new source starts from there. So, it goes

along these paths and it will roll back has not been necessary maintaining linear space

essentially. 

(Refer Slide Time: 23:28)

So, this is the RBFS algorithm which we have done rather quickly. I will leave you with an

example here problem for you to solve. In this example these nodes are the closed nodes, that

have been explored. The nodes with single circles are open nodes, that are in open and the

nodes, nodes in dash circles are the ones which have yet to be explored. And, in your you

should look at which of them you want to explore and the values are f values. 



And, what I would like you to do is to draw the graph after 2 expansions have been done from

this given state and also mark where the 3rd node that RBFS will pick up. So, we will put up

this graph as part of the weekly assignment and you must try to solve this problem. 

(Refer Slide Time: 24:11)

Next we will look at what is called as a monotone or consistency condition when, A star will

behave like Dijkstra’s algorithm; which means that when it puts a node then closed it would

have found an optimal path to that node. Or, in other words when it picks a node from OPEN,

it would have found an optimal path. And, we will see that this monotone criteria will allow

us to write better space saving algorithms which in fact, were devised in this century. 

So, we will take that up in the next session. So, see you then.




