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So, welcome back. The last time we were looking at this algorithm called alpha beta, pruning

for game playing. It is one of the most popular algorithms which is used for many board game

applications. Let us do a little bit of a recap of that and also study some of the properties of

that alpha beta algorithm.



So, if you remember, we had said that if we are evaluating a particular node which is J and

remember that the depth first algorithm is sweeping this thing and going towards the right

from left to right.

So, everything that you see on the left hand side of the paths that we have seen that is alpha 4

beta 3 alpha 3 beta 2 alpha 2 beta 1 and so on are partial values that the alpha nodes have got

and the beta nodes have got.

Remember, that alpha nodes are max nodes and they are lower bounds on their the values that

they contain are the lower bounds, because max nodes are trying to maximize the value and

likewise beta nodes a upper bounds on the values of that on that node essentially.

So, the question we were asking is should we continue exploring node J or not and remember

that by when we say that we mean shall we continue the recursive call to J or not. In this case

we have looked made a couple of calls to J and we have got some value alpha 4. When will

alpha 4 be meaningful in the game, when will it influence the root essentially.

So, we had observed that that node J will influence the root. Whenever the alpha value which

is alpha 4 is smaller than beta 3, smaller than beta 2, and smaller than beta 1, because only

then will it get selected and likewise it should be greater than alpha 3, greater than alpha 2,

and greater than alpha 1, because only then this particular value would be selected.

So, if this is to be meaningful it must satisfy all these properties. So, we can put this property

succinctly as follows that we look at the beta bound which this node J gets and this beta

bound is the minimum of the value of its beta ancestors which is beta 1, beta 2, beta 3

likewise we have an alpha bound which is the maximum of the value of this alpha ancestors

which is again alpha 1, alpha 2, alpha 3 and so on. 

So, we should first of all continue searching below J only as long as the alpha bound it gets is

greater than, smaller than the beta bound that it gets essentially. In other words, we can think

of a window where the lower end is alpha and the upper end is beta and every recursive call



gets these two bounds; alpha and beta and it is meaningful to search only as long as the

window is open, which means that beta is greater than alpha.

So, now, when we are exploring a beta node that beta node will try to reduce the bound a little

bit, because it is looking for lower values and whenever we are looking at alpha nodes, alpha

nodes will try to increase the bounds. So, that is of course, welcome for us because it takes us

to better values of the game, but we must stop to exploring if this window closes, which

means alpha has become greater than or equal to beta greater than or equal to beta.
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And so, this was formalized as follows that the alpha cutoff is infused by an alpha bound

from a max ancestor below a beta node. So, whenever we are developing this beta node, if

that beta value which is the minimum of alpha 1, alpha 2, and so on is becoming smaller than

alpha bound that it is get then we introduce a beta cutoff, when the beta cutoff happens here.



Likewise if you are exploring an alpha node a beta cutoff happens below an alpha node and it

happens, because of the influence of a beta ancestor and if the alpha value which is looking

for higher and higher values, if it becomes larger than beta then a cut off workers and this is

called the beta cutoff essentially.
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So, we had looked at the game tree and the alpha beta algorithm. We initialize alpha and beta

to be minus large and plus large which in some sense means that the window is completely

open and as the game progresses alpha nodes will find higher values and beta nodes will find

lower values and the value will become narrow and narrow essentially.

And we had seen through this process that in this recursive version of this algorithm that for

max nodes for each child we take the maximum of alpha which is the bound that it is got

from above and the recursive call value for the child which is alpha C alpha beta of C alpha



beta and keep choosing the maximum as long as alpha remains smaller than beta. The

moment alpha becomes greater than beta we do a cut and return the value of beta and

similarly for a min nodes.
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So, we had seen this in the last class. We also had seen a couple of small examples. So, let us

quickly kind of run through them and we had seen that in this small game tree they were to

cut offs; there was one alpha cut off which was below the beta node with a value 5 here and

this was influenced by the root value of 12, because the root is assured of a value of 12, it will

not be interested in a value which is less than 5 which is what this beta node is threatening to

do.

Likewise there was a beta cutoff below this alpha node with a value 13 and the reason for this

was similar that this node was looking or likely to become either 13 or more, because 13 it



has already got from the left child and its parent beta node which is the value 12 is looking for

a value smaller than 12 so; obviously, there cannot be no agreement between them and there

is a beta cutoff then we had seen a larger tree which had 36 leaf nodes and we saw that in this

particular example there were 26 nodes that alpha beta has inspected out of 36.
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So, 10 nodes had not been seen, but one thing that we want to kind of emphasize is that the

number of cut offs which take place is also dependent upon the order in which you inspect the

nodes. Now, remember that this is a game tree which means for example, at the top level max

has three choices. So, let us call them abc the fact that we draw a first and be second and C

third has no significance.

We could have drawn the game tree in any order. So, we could have actually permitted the

children or the sub tree of any sub tree by rotating it across the vertical axis and we would



have got the same game tree and does how does that affect the pruning behavior? Now, you

can imagine that the minimax value should not change, but does the pruning behavior change.

(Refer Slide Time: 07:58)

So, let us just try to search the same tree from right to left, which means you start searching

from the rightmost leaf and go towards the left most leaf and then you can see that and you

should work this out yourself that the cut offs are different essentially. In fact, the cut offs are

slightly more than when we search for left to right and this in this version alpha beta sees 23

out of 36 nodes.
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Now, a question that you might ask is what is the maximum number of cut offs which can

take place in any given tree and to look at this question here is a example of a contrived game

tree in which the values are chosen such that at every possible juncture there is a cut off and

you can see that in this contrived game tree where the values are just 30 and 32 and 33

chosen, so that the cut offs are maximized. You can expect to visit as little as 11 of the 36

nodes. So, clearly it depends upon how those nodes are placed essentially.
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Now, if you remember our high level game algorithm which calls alpha beta, in this case we

have called it k ply search, but this k ply search could have been minimax or it could have

been alpha beta or it could have been another algorithm that we will study, but once we call

this k ply search we make a move and then we wait for MIN’s move or the operands move to

come.

People have asked that in tournament conditions can we use the time that we get while the

opponent is thinking to do something meaningful and one of the thing that has been proposed

is as follows that, because the alpha beta pruning depends on the order of move generation

and if you look at a few examples you will realize that if the best moves are found early then

there is more cut off and if the best moves are found late then there are less cut offs.



So, if you have identified what are the best moves and you would have done this during your

k ply search then you could do the following. That having called k ply search while waiting

for opponents move one can reorder the moves for the next call to k ply, because again you

are going to call k ply, again remember that this game playing cycle goes into loops. 

You call k ply, you make a move, you wait for the opponent move and during this waiting

time you can do this little bit of extra work of reordering the moves which so that next time

the game tree would be, your algorithm will perform faster. The minimax value that you will

get, because of this reordering does not change the minimax value. The value is still the same,

but the difference is that it would be found faster.

So, what do we mean by reordering? For example, these two sub trees that I have highlighted

you could have exchanged them looked at the right subtree first instead of the left or in other

words you could have drawn them such that you know they are rotated about the y axis and

this is something that is done by game playing algorithms.
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Then we had said that our interest is in looking at an algorithm which is best first version of

game playing. So, if you remember that when we were looking at basic search, the idea of

best first search or heuristic search was that of all the options available you should choose

that which seems to be the most promising in some way and in some sense that an algorithm

has a sense of direction.

Now, our alpha beta algorithm does not have a sense of direction in the sense it always

searches from left to right in the way that we have defined the algorithm. We did see that if

you reorder the tree maybe its performance can change, but instead of reordering the tree can

we look at an algorithm which will go towards the best moves initially.



(Refer Slide Time: 12:14)

So, let us go to that algorithm. To do that, we have to go back to this idea of strategy that we

had discussed earlier. So, remember that a strategy for max and we are writing the program

for max is a subtree of the game tree where we choose one child for a max node and all

children for a min node and we continue doing that till we reach leaf nodes.

So, in this diagram we had studied earlier, we have shown two strategies; one is let us say a

red strategy in which all the leaves are labeled with W nodes. So, it is a winning strategy,

because min has no choice, but to choose one of these winning leaf nodes essentially.

Whereas, the strategy on the left which is a green strategy has a mix of win and draw nodes

and clearly, because max has chosen, max has choices min is the one which is left to choose,

min will drive the game towards a draw in this particular strategy if max were to say that this



is my strategy. So, clearly the task of max is to find a good strategy and this is the approach

that we will take in the algorithm that we are interested in.
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Now, one thing that we want to do is to cover all possible strategies, because we want our

algorithm to be complete in the sense it must give us the minimax value and it must tell us

what is the best move to be made.

If we consider that small binary tree that we had worked with, it has 8 possible strategies and

this can be computed as follows that at the max level in this case there are two choices. So, at

the root level there are two choices, then at the third level , because the strategy for min will

have both of these things again you have two choices.



So, you have 2 into 2 on the left hand side and 2 into 2 on the right hand side. So, in this total

is 4 plus 4 which is 8 and so, I will leave this as a small exercise for you to think about that if

you have a k ply look ahead search tree with branching factor b, how many distinct strategies

exist in that game tree. As we have seen in this small example which is a 4 ply with branching

factor to search tree there are 8 strategies and the task of max is to pick the best of these 8

strategies.
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So, how do we do that let us explore that next. The first thing to observe is that any node, any

leaf node that we select it represents a cluster of partial strategies. So, this node with a value

15 that we have seen you can see that its part of two strategies one we can call as a gray

strategy and the other as a red strategy. The double arrows that you see here, they are common



to both the red and the gray strategies and the two strategies differ on this part of the this part

of the tree essentially.

So, if we choose one node any arbitrary node in amongst the leaves in a game tree that node

represents what we call as a cluster of strategies or its these are partial strategies, because they

have not been completely specified. Only one node in that has been specified.

Now, if we remember that the value of a given strategy is the minimum of the value of all the

leaves in that strategy. You can also observe that this value which is 15, which is the only

node that we have so far looked at is an upper bound on all the strategies in this cluster.

In this particular cluster there are two strategies. So, both these strategies cannot have a value

greater than 15, because of the fact that the value of a strategy is a minimum of the value of

its leaves and if we know one leaf then you know that it cannot become higher than that.

So, that leaf becomes an upper bound. So, what do we want to do? We want to construct all

possible strategies, cover all possible strategies. So, essentially we want to identify enough

leaf nodes so that we will cover all strategies.

Now, we have seen in this example that one leaf node covers two strategies. So, and since we

know that there are 8 strategies in this tree, we can imagine that we will need 4 leaf nodes to

do that. So, how do we do the initial clusters?
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This is an algorithm called SSS star. It was devised by George Stockman in 1979, relatively

much later in the game playing world where alpha beta was discovered many-many years ago.

It is a best first approach to searching the game tree and it works as follows which is our idea

of heuristic search in general is that refine the best looking partial solution till the best

solution is fully refined.

This is the theme that we have been following in many algorithms that we have studied

essentially. In the in the case of games, a solution in a game tree is the strategy and a partial

solution is a partial strategy, which means that if you have only specified some leaves in the

strategy then it is a partial strategy and every partial strategy stands for a cluster of strategies,

because the other leaves can be filled in some different ways. So, ours theme of SSS star is



refine the best looking partial solution till the best solution is fully refined and the space in

which we search must cover all possible solutions.
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Now, algorithm SSS star searches in the solution space, in the space of strategies and it does

the following. You first define clusters to cover all strategies. So, remember we said there are

8 strategies in our small tree and we need to cover all those 8 clusters and we had kind of

guessed, then we need 4 leaf nodes to cover those 8 clusters.

Those nodes can be found as follows and there is a procedure for constructing the initial

clusters which says that start at the root and repeat the following that at the max level choose

all children, because you want to cover all possible strategies and at the min level choose one

child, because you just want to have a partial strategy and you do this till the horizon is

reached essentially.



This one child that we choose for min can be any child, but without any loss of generality we

will always choose a leftmost child. Now, this algorithm is for constructing the initial

clusters. 

It is not specific to the tiny game tree that we had seen. For any game that you are

implementing, this is a procedure that you will need to follow to construct the initial clusters

that at the max level choose all children and at the min level choose one child and we have

said that we will choose always the left child without any without creating any difficulty.
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So, in our tiny game tree we follow this procedure and you can see that we would have

constructed this, identified this 4 leaf nodes shown in orange here ah. So, you can see that at

the top level we chose both the branches for max, at the min level we chose only one branch,



and then at the max level we again choose two constraints. So, in this manner we consist the

4 clusters.

And the algorithm says refine the best cluster or refine the best partial solution. The best

partial solution is the one with a value 21, because it is minimax value can go as high as 21,

but not higher. The others have lower upper bounds 15, 5, and 13. So, we refine the best

cluster which is 25 and refining means looking at a sibling of that node essentially hm.
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So, we are going to refine this node with a value of 21 which is the best cluster and what

happens is that we have looked at the value 5 which is a neighbor and the value of this cluster

has gone down from 21 to 5 and it is also a solved cluster that min that min node that we see

is a solved node, but it is no longer the best.



So, we should shift our attention to the different cluster which is better in fact, which is the

best and this is the characteristic of best first search, that at every point you explore what is

the best looking partial solution. So, the next best is this 15 and we will continue with that

essentially.
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So, we continue to refine that and we see that it gets refined down to 11 ah, because its

neighbour has a value 11 and, because this 11 is going to be better than 5, the cluster which

had value 5 can now, be discarded and this particular cluster has been solved, but it is no

longer the best. The best has shifted to 13 here and we will shift our attention to 13.
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So, we do the same thing. With this node we refine it; our previous cluster has now got

merged into one cluster. So, when we started with 4 clusters, now we have only 3 left and

when we refine this 13 node its sibling is 12 and it gets solved and in a similar fashion its

neighboring cluster which had a value of 5 also gets deleted.

So, at this point we are left only with two clusters; one is the value 11 and one is the value 12

essentially. What is what do these values mean 11 and 12? It means that the cluster with value

11 can at most be, the minimax value can at most be 11 and on the right hand side cluster it

can be at most 12.

So; obviously, we prefer the right hand side cluster and now we refine, we have to refine that

cluster, but refinement now follows the slightly different path we will formalize this

algorithm a little bit later, but the basic idea is that if you look at the min parent of this max



cluster, in the cluster that we have constructed this is the only child which exists, but they

have they, but it has other children. 

In this case there is only one other child and that other child could have a lower value or a

higher value, we need to investigate that. If the other child had the lower value than the value

of this strategy will go down, if the other child has a higher value then the value of the

strategy will remain 12.
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So, let us explore that. So, since this is the best solved node and it is a max node. What we do

next is to add the sibling of this max node as the next problem to be solved. So, in other

words we make a recursive call to SSS star algorithm and the subtree that we have shown

here, but this is solved with an upper bound of 12. Why this upper bound of 12? 



Because if this is going to be greater than 12 then we are not interested in that, because its

present is the min node, if it is going to be less than 12 then we need to find that out, because

we may want to shift to the other strategy which has a value of 11 essentially. So, we do this

recursively which means we again consider the subtree and make clusters and then refine the

best cluster and so on.
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So, this is what we are doing. Now, we are doing this sub cluster and we want to check

whether its value is going to be less than 12. So, we do the same thing as before, we choose to

all children for max and one child for min and then we have got the clusters. In this case two

clusters; one has a value of 13 and the other has the value of 7 and we will refine the best

cluster essentially and the best cluster has a value of 13 and its neighbor has a value of 14.
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So, the value of this particular cluster remains 13. Now, 13 is going to be better than 7 and

therefore, there is a cut off of that cluster with value 7, which means that this cluster is now

fully refined and it has a value of 13 essentially ok.
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So, you can see that the value of this subtree is 13, because of the 4 children that is the

minimax value which comes from this node, which is a value of 13. So, the question we were

asking is that is this value going to be less than 12? The answer to that was no and therefore,

we just ignore it, we discard it and we do not have any more siblings of this max cluster that

we had solved earlier.

We explored one sibling, but it turned out that it was going to give us a higher value which its

min parent was not going to accept. So, there are no more siblings and therefore, the min

parent gets solved. Once a min parent get solved, it is solved and it is also the best which

means that the other strategy which is of value 11 could not be become more than 12. So, we

know that the root will get a value of 12 from this cluster and we have solved the game tree.



So, we have seen that in this SSS star algorithm the algorithm searches the tree always

looking for the best cluster to refine and it terminates when the best cluster is completely

refined. So, once we have a value for the root we know that it is completely refined or it is a

full solution and the algorithm get terminate and this is the strategy that it returns, this is a

strategy that it returns as the this thing.
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The value is 12, the dark green nodes show the paths that is expected to be followed in the

game ah, because min has two options; 12 or 13 and we have already seen that it is not going

to be interested in 13. It will choose 12 and max has already decided that of the options that it

had. 

Remember that this cluster would have given it a value of 5, but now max has chosen max

has choices and has already ignored that and so, max has already decided that it is going to



make this move at 12, which is what the algorithm return to us and we expect that from this

min node min will choose the smaller of the two value is 12 and 13.

So, that is where we expect the game to proceed essentially. So, this was the very kind of a

gentle introduction to this algorithm SSS star what we will do next in the next session is to

look at the algorithm more formally and in a little bit more detail. So, we will put it down as a

piece of pseudo code and look at an example which is on a larger game tree. So, we will do

that in the next session.


