
Artificial Intelligence: Search Methods for Problem Solving
Prof. Deepak Khemani

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Chapter – 07 and 10
A First Course in Artificial Intelligence

Lecture – 67
The Planning Graph

 (Refer Slide Time: 00:14)

Welcome back. So, this is the last topic in Planning that we will consider. Actually, planning

has become a vast subject in itself and one can offer a full course in planning and many

people do. But since we are seeing it from the perspective of search methods in Ai, we are

essentially trying to see what are the different approaches they use for constructing plans

using search methods essentially.



So, what we want to now consider is this algorithm called graph plan which kind of

revolutionize the whole world of planning because using techniques that kind of evolved

around that time, people could construct much longer plans than earlier and that was gave a

kind of a boost to research in planning. 

(Refer Slide Time: 01:09)

So, let us study this algorithm graph plan, it was presented by Blum and Furst in 1995 and as

I said, it takes a very different view of the planning problem. Instead of searching for a

solution either in the state space or the plan space, it constructs a structure which it calls

which is called a planning graph that potentially captures all possible solutions and then,

proceeds to search for a solution in the planning graph. 

So, at the outset maybe I should clarify that it is not that it constructs the entire structure

which contains all possible solutions. It does so incrementally and at certain stages, when



there is a possibility that a plan might have been found, it stops constructing the planning

graph and starts the plan extraction process or the search process within the planning graph

and we will see this as we go along.

Now, starting with graph plan many new planning algorithms came in the mid nineties and

early part of this century and planning as I have said has become richer. In the sense that with

these better algorithms people have started addressing richer domains. For example, temporal

planning, metric planning, soft constraints, the issues that we considered. But, we will study

graph plan only in the context of states planning. 

Now, as I said these new algorithms, they increase the lengths of plans that could be found

from the or by an order of magnitude. So, earlier you could find plans which are 10, 15, 20,

30 steps long, but now you could find plans of 150 to 200, 250 steps long. Further, similar

kind of problems and that is why there is great interest in planning. 



(Refer Slide Time: 03:09)

Now, graph plan also kind of was the pioneer in this approach to two stage planning, the

people had tried earlier also. For example, transforming planning problems into other

problems; but it kind of got momentum after graph plan. So, what does graph plan do? Graph

plan constructs a planning graph and then, searches for the solution in the planning graph. 

So, so, the first stage is kind of construction of the graph and the backwards backward stage is

searching for a solution there. There was an algorithm called Satplan which came around that

same time 1992, a little bit earlier than graph plan. In fact, work on logic-based approach

planning had been going on since the very beginning, till people realize that ah a strips like

approaches kind of more simple and efficient. 

But nevertheless, the work continued and what a SAT plan does is it converts a planning

problem to a satisfiability problem and uses an of then you can use an off the shelf solver to



sat problem. This has been our theme in this course throughout that we must have general

purpose problem solving approaches and we take specific problems and solve them using

those general purpose approaches. 

Now, this SAT plan takes that one step further that even though no meaning in independent

planning that we are considering is a general purpose approach, it even reduces this to

something like a satisfiability problem because there has been a considerable amount of work

in developing SAT solvers because SAT solvers are used not only for planning; but for other

applications as well. 

Unfortunately, we do not have time to go into these approaches in this course; but hopefully

at some later point, we would have an opportunity to do. So, C plan was similar it converted

the planning problem into what we called as a constraint satisfaction problem. 

We are not so far studied constraint satisfaction problems in this course, but we will do a

quick study towards the end which would for the sake of completeness. Because constraint

satisfiability problems are also in their own right, a very interesting independent approach to

general problem solving.

We will study a little bit of it towards the end of this course. Now, it turns out that SAT

problems are just a special case of constraint satisfaction problems because both of them deal

with having a set of variables, a set of domains for their variables and a set of constraints on

some subset of variables. 

Now, in the case of CSP, the variables can have any domains For example, classic example

would be classroom scheduling because if there are many courses being offered and there are

many teachers teaching those courses and many students have registered for those courses and

so, constructing a timetable which may include assignment of courses to teachers. 

It can be seen as a constraint satisfaction problem, because there are very many variables a

teacher, teaches a course; a classroom has a class timetable, courses have slots and so on.

SAT is a general is a special case of constraint satisfaction problems in which the variables



are all Boolean in nature. They can only take two values; typically, we call them true and false

or 0 and 1 and the constraints in SAT problems are expressed as again Boolean constraints.

So, we have we can have you know ‘and or not’ and we have seen sat problems earlier in this

course. Another approach which also took off at around that time was the use of domain

independent heuristics. 

We had not had time to look at it, but we had mentioned it in passing when we were looking

at the 8 puzzle for example and the idea of domain independent heuristics is to reduce the

planning problem to something called a relaxed problem and which can be solved in let us

say polynomial time and use that relaxed problem to estimate a distance to the goal. 

So, the heuristics that we are talking about do not come from the domain; they are not given

to us by the user, but they are constructed by the algorithm themselves and this is also be the

very profitable area of research for people working in planning. We will have our confine our

study to graph plan in this course I think and in particular to graph plan with states like

actions. 



(Refer Slide Time: 08:23)

So, let us see how graph plan is different from state space planning. If this was a problem,

then if given that this was a start state which had four propositions; p 1, p 2, p 3, p 4 and there

were two actions A 1 and A 2 that were applicable in the start state. Then, a search-based

planner would construct a search space in which for example in forward state space planning,

it would apply the applicable actions and move on to on progress over that action to the new

state. 

So, in this diagram, the new state have there are two states; state 1 and state 2. State 1 has

some p 1, p 2, p 4 and a new proposition called p 5 and state 2 has three predicates p 2, p 3, p

4. Perhaps, I should have added another one p 6; but anyway, this is just to illustrate the idea. 



What the planning graph does and this is the most significant part is that it takes a union of all

possible states that the planner could have moved to by applying one action and it constructs

a layer of those proposition. So, that is called the proposition layer.

So, you can see that in this particular diagram on the right hand side, we have kind of merged

the propositions in the two states and we have constructed one layer this thing. Of course, I

have not shown you the union operation at this moment because as we can see there is p 2

here and p 2 here, but and also p 4 here and p 4 here; but in the union, there will be only one

copy of that. 

So, in a sense, this can give us some insight into what makes graph planning and it is that

instead of considering all possible sequences of actions and all possible states that you can go

through which can go exponentially, it kind of compresses them into a layer which somehow

implicitly contains all possible states.

Of course, it has to do a considerable amount of work to sort out one state from another, but

we will see how it does that. So, this is the basic idea in graph plan that you take the union of

all possible states that can be reached in one step and call that a planning call that a

proposition layer in the planning graph essentially. 



(Refer Slide Time: 11:17)

So, that is the proposition layer that we have been talking about and the figure shows the

basic difference between state space for planning problem and the corresponding planning

graph. In the state space each action is applied individually and produces a successor state

individually. In the planning graph, all actions are applied simultaneously; not applied, one

should say considered simultaneously and proposition layer is constructed which is the effects

of all those actions. 

So, the state space search would have constructed a successor state from which search would

have proceeded forward; but in the planning graph, all the states are kind of merged into one

representation and it will be a SAT representation as we will see we will call it as a layer and

all the states that can be produced by different applicable actions are merged into one layer

essentially. 



So, the resulting set of propositions forms a layer and in fact, as just the actions that resulted

in this layer. So, this actions A 1 and A 2, they are being considered separately in state space

planning. In the planning graph, they would go into an action layer as you will see in the next

slide. So, the planning graph is essentially a layered graph which is made up of alternating

layers or alternating sets of action layers and proposition layers. 

(Refer Slide Time: 12:51)

So, this representation of the state space search with a specific example that we are looking at

just to illustrate this. So, in this example, the start state it has been shown on the right top

corner of this slide, A is on B and B is on the table C is on the table and the arm is empty. 

While constructing the planning graph, we do not really consider the goal state. It is like

power state space search in some sense that you keep going forward and at some point, if you



find the goal state, then it is terminate and we the planning graph also does something a little

bit which is similar to that.

Now, in the state space as we have seen, we have had two applicable actions in this thing, you

could either pick up block C or you could unstack block A from block B and you would go

into two different states; state 1 or state 2 essentially. What happens in the planning graph

representation? Is that all these three stages the start state; so, this is the start state which is

often called as P 0 or the zeros planning layer.

Then, the first action layer and the first proposition layer which follows after that and there

are these layer by layer and after the in the first action, there are both the actions that were

applicable in the start state have been included and in the first proposition layer P 1, all the

propositions that were true in the different states, when those actions were applied have been

included essentially.

So, the action layer is a set of all individually applicable actions and this is the basic structure

of the planning graph and after this, we will have more layers. So, the second action layer A 2

followed by the second proposition layer p 2 and so on and so forth. 



(Refer Slide Time: 14:45)

Now, there is a special action that we consider in graph plan and in the planning graph and we

need to consider this action because it is possible that there are certain actions which are

applicable, but we want to apply them later on in the plan; but we want to carry forward the

states forward. 

So, in a way, since we are keeping a union of all propositions, we should be careful that any

actions which were applicable earlier will also be applicable layer and this is done in the

planning graph by using an action called the no-op actions.

So, there is no operator there and the no-op action basically is always applicable and for every

proposition in your planning graph in a planning layer, you can include no-op action. The



no-op action takes any predicate any proposition P as a precondition and it has only one

positive effect which is the same proposition P essentially. 

So, you can see here that the top most no-op action has preconditioned that B is on the table,

on the table B and it has an effect on table B itself essentially. So, if this will be basically used

to carry forward the state so that actions can be applied at a later stage as well. 

Now, since a no-op action is always applicable, it is going to replicate the proposition layer at

every stage essentially. So, every layer as we proceed forward, we will have the same

proposition carry forward again. So, this is the first observation you must make about the

planning graph, that if any proposition occurs in any layer i, it will also occur in any layer j

which is greater than i essentially and the planning graph is constructed. 

In our diagram that we will draw, we will assume that we will not draw the no-op actions. We

have we have shown it here and except for one specific place, we will not show it again you

must assume that these no-op actions are there as part of the planning graph essentially. 

As we said the planning graph is made up of layers, proposition layers and action layers

alternate alternating with each other and the action layers must include all no-op actions as

well essentially. 



(Refer Slide Time: 17:20)

Now, let us consider the actions which are different from no-op actions, basically which do

something which change something in the domain. Now, we saw that in this particular state,

there are two actions which are applicable that you can unstack A from B or you can pick up

C. So, we must add those two actions to the first action layer. 

Remember that all the no-op actions are still present in this action, there we are just not drawn

them here essentially. So, implicitly there is an action which is the no-op action, which carries

forward the predicate or proposition on table B and that is why all the propositions layer P 0

have been replicated into the action layer P 1 essentially.

So, we have just two actions pick up C and unstack A from B, but we have to also include

other information about these actions and that information pertains to the preconditions for



the actions, we must know when the action is applicable. In this case, somehow we have said

that they are applicable, but we have not depicted it in the planning graph. 

So, the planning graph explicitly contains sets of edges in different layers and the sets of

edges are the first one is the preconditioned links. So, we have preconditioned links going

connecting to propositions and they identify the preconditions for every action here. 

So, you can see here for example, that for pickup C, it must be true that that C is clear, it must

be true that C is on the table and it must be true that arm is empty. So, the three pre

conditioned links make this connection and store it in the planning graph essentially.

Likewise for the other action unstack A, B. 

Now, the propositions that we have shown in the first action layer P in the first proposition

layer P 1, they have been generated by the no-op actions. So, for example, on table B is

replicated in the first proposition layer, but we also have to include that the propositions

which are the effects of these actions that we are added to the action layer and we must add

all applicable actions to the action layer.

So, this all is important and that is for the sake of completeness, we do not want to miss out

on any possible plan. So, the effects of these actions is the next thing that we have to think

about and you can see that these positive effects will appear as new propositions in the

planning graph in layer P 1 and this fact that they are the effects of these actions is captured

by storing the positive effect links which tell you what are the positive effects of each of the

actions. 

So, unstack B A for example, has a positive effect that we are holding A and the fact that B

has become clear; likewise pick up C has action that you are holding C. What remains is

negative effects and the negative effects are stored in a different kind of a link which tells you

that certain thing certain propositions are going to be deleted by this action. 



So, for example, this negative link which says that if you pick up C, then on table C will no

longer be true essentially. So, instead of deleting it, like we did in forward state space

planning, we add a different kind of a link which is called a negative effect link. 

So, you can see that in this particular example, there are three or there are four negative links.

If you pick up C, then C is no longer on the table or if you unstack A from B, then A is no

longer on B and in both cases, the arm is no longer empty essentially. So, this kind of depicts

the different kinds of layers that we are storing in the planning graph. 

We have propulsion layers, we have action layers, we have succeeding proposition layers. So,

P 0, P a, A 1 and P 1 in this case, then we have preconditioned links which link actions in A 1

into the preceding proposition layer and then, we have positive effect links and negative

effect links which link action. So, they effects in the following layer essentially.

So, even though for example, when you do pick up C, forward state space planning would

have deleted on table C. Graph plan does not do so, but it adds a new link from pickup C to

on table C and this is a negative link, it says that this is a negative effect of pickup C. On

table C survives because remember that we have those no-op actions and they will continue to

be yeah continue to apply. 

So, you can imagine that if you have to construct a plan in which the first action was unstack

A from B, then you should be able to do this pick up C action sometime later and the fact that

you are carrying it forward in every proposition layer will enable you to do that. The precise

conditions, we will talk about as we go along. 



(Refer Slide Time: 22:57)

Now because of no-op actions the actions and the propositions in any i minus one layer gets

replicated in the ith layer. So, just as we replicated the start state actions into P 1, the start

state propositions into P 1, we will also replicate the propositions in P 1 into the layer P 2 and

because of the fact that the actions that were applicable in P 0 will be applicable in state P 1

also. We will also include those actions in the second action layer. 

So, the first thing that we observed is that any action that has introduced in any layer will

continue to be introduced in subsequent layers and any proposition that is introduced in any

layer will continue to be introduced in subsequent proposition layers. 

And this is all because we have these no-op actions, which means that the action layers and

the proposition layers, they will grow monotonically as we grow the graph. We are growing



the graph from left to right, it is a layered graph. But apart from this, replicating this thing, we

also have new actions which are become applicable.

(Refer Slide Time: 24:16)

And so, in the next layer those will come as well. So, in addition to the no-op actions, the

applicable actions and their effects have to be included. And now, you can see that in the next

layer three more actions have been, six more actions have been included that because if you

had done for example, pick up C and then you would be holding C and then, you could do

any of these three actions that you put down C or you stack C onto A and you stack C onto B..

Likewise, if you had unstuck A from B, you could have done this something similar with A

that you could you could have stacked it onto C or stacked it onto B or put it down

essentially. And obviously, as we can see the number of propositions is growing the number



of links is growing and in the diagram that I have drawn, I have not included all possible links

because it is already becoming quite cluttered.

But I hope you get the idea that this is how the planning graph is grown essentially. So, we

have spoken about the following sets or the following sets that are stored; one is a setup

proposition layers. So, P 0, P 1, P 2 and so on. Then, there is a set of action layers A 1

between P 0 and P 1, A 2 between P 1 and P 2 and so on. 

Then, each of the actions layers has a connection to the previous layer which is the

preconditioned links and connection to the following layer, which is the effect links and there

are two kinds of effect links; positive effects and negative effects.

But this is kind of you know merging everything together into in to one structure and it is not

clear as to what can be what can be a possible set of actions which will be a solution for the

plan. 

But the advantage of constructing this planning graph is that it can be constructed in

polynomial time and we kind of defer the act of searching for a plan onto the planning

problem. Now, as I have said often that the planning problem has been shown, it was shown

by Gupta and now in 1992 or so to be in P space complete which means it is in exponential

time; but polynomial space.

So, you cannot say that you have found a solution to a problem which is cheaper than that;

but within those bounds, you can find algorithms which are faster than other algorithms and

that is what these new approaches tend to do. But now, we must also figure out as to how to

identify states in this proposition layer and how to identify actions which can in practice, we

executed in these action layers.



(Refer Slide Time: 27:16)

So, to do that, we introduced another set of links and these are links which are within every

layer, these are called mutual exclusion links.


