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Hello everyone. Welcome to this lecture. Plan for this lecture is as follows: In this lecture, we 

will see some basic properties regarding polynomials over fields. And we will also discuss 

about Lagrange's interpolation. The reason we want to discuss these concepts is that, looking 

ahead, this will be useful when we want to design an efficient threshold secret-sharing scheme 

for any given threshold 𝑡 which is less than 𝑛.  
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So, what are polynomials over a field? So, imagine you are given a field with an abstract plus 

operation and an abstract multiplication operation. So, the polynomials over a field are very 

similar to usual polynomials that we are aware of, where we have integer coefficients or 

coefficients which are real number. So, if I say that I have a polynomial whose degree is 𝑡, and 

if the polynomial is over the field 𝔽, then basically I am talking about a polynomial 𝑓(𝑋) which 

has 𝑡 +  1 coefficients.  

 

So, those coefficients 𝑎, 𝑎ଵ, … , 𝑎௧, they are elements over the fields. And 𝑎ଵ will be the 

coefficient of 𝑋 to the power 1; 𝑎ଶ will be the coefficient of 𝑋 to the power 2; and 𝑎௧ will be 

the coefficient of 𝑋 power 𝑡. So, in total you have 𝑡 +  1 coefficients, and that is why this will 

be called a t-degree polynomial. And all these coefficients are elements of field. So, it could 

be the case that all your coefficients are the 0 element.  

 

That is quite possible, but still we will call such a polynomial as a t-degree polynomial. Or it 

could be the case that only 𝑎 is, say 𝑎௧, the coefficient 𝑎௧ is 0, but remaining other coefficients 

are non-zero elements. So, all such polynomials will be called as t-degree polynomials.  
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And here, the plus and the dot operation that we have in the definition of this 𝑓(𝑋) are not the 

integer addition and integer multiplication, but rather they are the field plus and the field 

multiplication operation. So, let us see an example here. So, imagine I consider my field 𝔽 to 

be the set ℤ, which has the elements 0, 1, 2, 3, 4, 5 and 6. And my plus operation in this field 

is the addition modulo 7, and my multiplication operation here is the multiplication modulo 7.  

 

So, this will be an example of a polynomial over the field ℤ which is a 4-degree polynomial. 

Even though it does not have coefficients for, or it does not have terms like 𝑋ଶ and 𝑋ଷ, I can 

implicitly assume that it has terms like 0 times 𝑋ଶ and 0 times 𝑋ଷ to be implicitly present in 

this polynomial 𝑓(𝑋). So, this is an example of a polynomial over the field ℤ.  
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And here, the plus operation and the dot operation; so, dot operations are here; are the integer, 

are the addition modulo 7 operation and the multiplication modulo 7 operation. So, let us 

evaluate or compute the value of this polynomial, let us say 𝑥 =  1. So, if I want to compute 

the value of the polynomial at 𝑥 =  1, I substitute x = 1 everywhere. But remember, all the 

addition and multiplication operations are performed modulo 7; so, 𝑓(1) will be 11 modulo 7.  

 

So, 𝑓(1) would not be 11, because the plus and the multiplication operations are performed 

modulo 7. If I want to compute 𝑓(8), then there are 2 ways to compute that. I could compute 

6 plus 2 times 8, plus 3 times 8 to the power 4. And then, everything I can reduce modulo 7. 

But that will require me to perform a little bit large computations. Instead, what I can do is the 

following:  

 

The element 8 can be reduced modulo 7 itself, because the element 8 is actually not a member 

of the field ℤ. But I can make it a member of ℤ by reducing it modulo 7, because my 

operations here are performed modulo 7. So, 𝑓(8) will be the same value as 𝑓(1), and we have 

already calculated 𝑓(1). So, you can verify. That does not matter whether you compute 𝑓(1) 

and then equate it with 𝑓(8); that will give you the same result.  

 

Or if you directly plug in the value of 𝑋 to be 8 everywhere and then compute everything, and 

then do modulo 7, you will get the same result. So, that is an example of a field and polynomial 

over a field, you can have any abstract field with an abstract plus, an abstract dot operation, 

and then you can define polynomials.  
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Next, we define what we call as root of a polynomial. And this is again similar to root of an 

equation that we are familiar with in the integer world. So, if we are given an equation, say 

𝑋ଶ + 2𝑋 + 𝑎; or an arbitrary equation 𝑋ଶ + 𝑎𝑋 + 𝑏, then we say that 𝑍 is the root of this 

equation, if I substitute 𝑋 = 𝑍 and get 0. So, I carry over this definition for polynomials over 

field.  

 

So, imagine 𝑓(𝑋) is a polynomial over a field in the variable 𝑋, then a value v from the field 

or an element f v from the field will be called as the root of this polynomial, if the polynomial 

evaluated at 𝑥 =  𝑣 gives you the 0 element of the field. Again, this is not the numeric 0, this 

is the 0 element of your field. So, again, let us take the example of the polynomial that we have 

defined, that we have written down over, where my field is ℤ.  

 

And now, it is easy to see that this polynomial has no root. Because 𝑓(0) is not 0, 𝑓(1) is not 

0, 𝑓(2) is not 0, 𝑓(3) is not 0, and like that 𝑓(6) is also not 0. Now, you might be wondering, 

why cannot I say f, why I am only restricting to 𝑋 =  0 up to 𝑋 =  6. It could be possible that 

there is some value greater than 6, such that 𝑓(𝑋) takes the value 0 for this particular 𝑓.  

 

Well, that is not possible, because if you take any 𝑋 >  6, and try to compute the value of 𝑓(𝑋) 

for such an 𝑋, then that will be one of these 7 possible values. It will be either 𝑓(0) or 𝑓(1) or 

𝑓(6), because 𝑓(𝑋) will be same as 𝑓(𝑋 𝑚𝑜𝑑𝑢𝑙𝑜 7). And this will be either 𝑓(0) or 𝑓(1) or 

𝑓(6). But all these 7 values, none of them is equal to 0. And hence, it does not matter whether 

your 𝑋 > 6. Also if you evaluate 𝑓(𝑋) for such an 𝑋, it will give you a non-zero value. So, that 

shows that this polynomial does not have any root.  
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Whereas, if I consider another polynomial 𝑔(𝑋) over the same field and compute the value of 

𝑔(0), 𝑔(1), 𝑔(2), 𝑔(3); all of them turn out to be 0. That means, this polynomial has 4 roots. 

Now, you might be wondering, is it possible that this polynomial have more than 4 roots?  
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Well, we have a general result, which is similar to the results regarding the number of roots 

that you may have for an integer polynomial. By integer polynomial, I mean, where you have 

the integer coefficients and the plus and the multiplication or the integer plus and the integer 

multiplication. So, this result is regarding the number of roots that you may have for a 

polynomial over a field.  

 

And the result says that, if you take a t-degree polynomial over the field, then it can have at 

most t roots. That means, either it can have 0 number of roots or it can have 1 root or it could 



have 2 roots or maximum it could have, it can have t roots. Now, it may be the case that some 

of them are, all of them are distinct, some are repeated; you may have different possible cases.  

 

But in total, the number of roots that you may have for a t-degree polynomial over a field is 

upper bounded by t; that is the maximum number of roots you can have. So, I will not be going 

into the proof of that theorem. That is not required. But we can prove it. If you are interested, 

you can refer to any standard text in abstract algebra. Another interesting result regarding 

polynomials over the field, which we will be using is the following:  

 

If I consider 2 different t-degree polynomials; and when I say different t-degree polynomials, 

by that I mean there is at least 1 power of 𝑋 for which the corresponding coefficients are 

different in the 2 polynomials. It is not the case that all the coefficients of both the polynomials 

are identical, because, if that is the case, then basically they are the same polynomial.  

 

When I am saying that they are different polynomials, at least 1 of the coefficients or 1 of the 

power of 𝑋 will have different coefficients in the 2 polynomials. So, the result says that, if you 

take 2 different t-degree polynomials over the field, then they can have at most t common 

values. You cannot have more than t common values for 2 different t-degree polynomials. So, 

how to interpret this result?  

 

Again, I would not be going into the proof, but let me give you a pictorial interpretation. Let 

us take the case of 𝑡 =  1 to understand this result. So, for 𝑡 =  1, a polynomial of degree-1 is 

nothing but a straight line. So, the result says the following: That if you take 2 straight line, if 

you take; so, this red line, this is a straight line equation. Imagine that the corresponding 

equation is 𝑓(𝑋).  

 

And you have this blue line which is again a straight line. So, its corresponding equation, say 

it is 𝑔(𝑋) or it will be a 1-degree polynomial. Now, it is a well-known fact that if I take 2 

different straight lines, they can have at most 1 point common, at most. It is not necessary that 

definitely they should have 1 common point. It could be the case that the 2 straight lines, they 

never intersect, they are parallel, or they never intersect at all.  

 



It could be the case as well. But if at all they intersect, they can intersect at most at 1 point. 

And that 1 point will be common; common in the sense, it lies both on the blue straight line as 

well as on the red straight line. That means, I can say that this point belongs to g of X as well 

as f of X. So, again, let us see an example to make it more clear. So, consider 2 polynomials 

𝑓(𝑋) and 𝑔(𝑋) here.  

 

Both are over this field ℤ and where the operations are addition modulo 7 and multiplication 

modulo 7. Now, it is easy to see that if I evaluate the 𝑓 polynomial at 𝑥 =  1, and if I evaluate 

the 𝑔 polynomial at 𝑥 =  1, I get the value 0. Hence, I can say that the point 1, 0 is common 

to both the polynomial 𝑓(𝑋) as well as 𝑔(𝑋). In general, if you have 2 different t-degree 

polynomials, they can have at most t common values.  

 

And how we can prove it? Actually, we can prove this second theorem using the help of the 

first theorem here. If you consider 2 different polynomials 𝑓(𝑋) and 𝑔(𝑋), the claim is as per 

the theorem that they can have at most t common values. So, we can prove it by contradiction. 

So, on contrary, assume that they have 𝑡 +  1 or more common values. That means, you have, 

say 𝑓(𝑋ଵ) = 𝑔(𝑋ଵ); you have 𝑓(𝑋ଶ) = 𝑔(𝑋ଶ); and like that, you have, say 𝑓(𝑋௧ାଵ) =

𝑔(𝑋௧ାଵ), where this 𝑋ଵ, 𝑋ଶ, … , 𝑋௧ାଵ, all are different.  

 

Now, if this is the case, what can I say about the polynomial 𝑓(𝑋) − 𝑔(𝑋)? So, you consider 

the polynomial 𝑓(𝑋) − 𝑔(𝑋). Let us call this polynomial as 𝐷(𝑋). Now, what will be the 

degree of 𝐷(𝑋) polynomial? Since, 𝑓(𝑋) is a t-degree polynomial, 𝑔(𝑋) is also a t-degree 

polynomial, I can say that 𝐷(𝑋) is also a t-degree polynomial. Now, what can I say about 

𝐷(𝑋ଵ)? 𝐷(𝑋ଵ) will be 𝑓(𝑋ଵ) − 𝑔(𝑋ଵ).  

 

But 𝑓(𝑋ଵ) and 𝑔(𝑋ଵ) are same. Hence, 𝐷(𝑋ଵ) is the 0 element. In the same way, 𝐷(𝑋ଶ) will 

be the 0 element. And like that, 𝐷(𝑋௧ାଵ) is also the 0 element. That means, I get the conclusion 

that 𝑋ଵ, 𝑋ଶ, … , 𝑋௧ାଵ are roots of the polynomial 𝐷(𝑋). But 𝐷(𝑋) has degree-t, hence it can have 

at most t roots, as per this first theorem. But I am showing you that 𝐷(𝑋) will have more than 

t roots. That is not possible.  

 

That means, whatever I assumed regarding 𝑓(𝑋) and 𝑔(𝑋), that is incorrect. I assumed that 

𝑓(𝑋) and 𝑔(𝑋) have t + 1 common values; that is an incorrect assumption. Hence, they can 



have at most t common values. So, that is another interesting result regarding polynomials over 

the fields. We have 2 interesting properties here. So, now, we will see some more properties 

here, which will be useful for us.  
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The last property that we require for our secret-sharing scheme later is the following: If you 

are given 𝑑 +  1 points from 𝔽. So, you can imagine (𝑥ଵ, 𝑦ଵ), (𝑥ଵ, 𝑦ଶ), … , (𝑥ௗାଵ, 𝑦ௗାଵ) as 𝑑 +

 1 points in two-dimension plane, where it is given that the x-coordinates, all of them are 

distinct and elements from the field. That means, 𝑥ଵ ≠ 𝑥ଶ ≠ 𝑥ଷ ≠ ⋯ ≠ 𝑥ௗାଵ; all of them are 

different elements and elements from the field.  

 

Then this theorem says that, there always exists a unique polynomial of degree-d, call it 𝑓(𝑋), 

such that this x, y pairs which are given to you constitute points on that polynomial 𝑓(𝑋) or lie 

on the polynomial 𝑓(𝑋). So, basically, what I am saying is the following: It is a well-known 

fact that if I give you 2 distinct points, in the x, y plane; so, this is your, say (𝑥ଵ, 𝑦ଵ) and 

(𝑥ଶ, 𝑦ଶ); there always exists a unique straight line passing through it; let us all be aware of.  

 

I am just generalising that result over fields, because now I am saying that this result holds 

even if the x, y elements, x, y pairs are elements from the field. What I am saying is, if you are 

given 𝑑 +  1 such x, y pairs, where the x-coordinates are distinct, that ensures that your 𝑑 +

 1 x, y pairs, they are distinct elements, none of them are the same. Then, you can find a unique 

curve; that curve I am calling it as 𝑓(𝑋), whose degree will be d and which passes through 

those 𝑑 +  1 x, y pairs.  
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So, this is what I am claiming pictorially. You are given (𝑥ଵ, 𝑦ଵ); (𝑥ଶ, 𝑦ଶ); (𝑥, 𝑦); and 

(𝑥ௗାଵ, 𝑦ௗାଵ). Then you can always find the curve, call it 𝑓(𝑋) whose degree will be d. That 

means, your 𝑓(𝑋) will be of the form sum 𝑎 + 𝑎ଵ𝑋 + 𝑎ଶ𝑋ଶ + ⋯ + 𝑎ௗ𝑋ௗାଵ, where all this 

𝑎, 𝑎ଵ, 𝑎ଶ are elements from the field, such that this 𝑓 polynomial evaluated at 𝑥 = 𝑥ଵwill give 

you 𝑦ଵ, this 𝑓 polynomial evaluated at 𝑥 = 𝑥ଶ gives you 𝑦ଶ, and so on. That is what is the 

claim.  
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Now, and the fact is that, not only there is a polynomial, that polynomial is a unique 

polynomial. That is also, is one of the implications of this term. That means, you cannot have 

2 different curves 𝑓(𝑋) and 𝑔(𝑋) passing through this x, y pairs. And that comes from our 

previous results. Because, in the previous 2 theorems, we have already argued that 2 different 



d-degree polynomials cannot have more than d common values, they can have at most d 

common values.  

 

But here we are given 𝑑 +  1 x, y pairs, so, that is why there can be only 1 and only 1 

polynomial of degree-d passing through this d + 1 x, y pairs. So, now, how do we prove this 

theorem? There are several ways to prove it. We will be interested basically to construct this 

polynomial 𝑓(𝑋). This 𝑓(𝑋) polynomial is not given to us. We are given only the x, y pairs. 

𝑥ଵ, 𝑦ଵ is given to you; 𝑥ଶ, 𝑦ଶ is given to you; 𝑥ௗାଵ, 𝑦ௗାଵ is given to you.  

 

Your goal is now to find out this polynomial 𝑓(𝑋), because that is what we will require in our 

secret-sharing protocol later. How do you get this 𝑓(𝑋) polynomial? So, there are several ways 

to do this. The most, the easiest method is what we call as Lagrange's interpolation attributed 

to Lagrange, who invented this method. And why it is called interpolation?  

 

Because you are basically interpolating the points 𝑥ଵ, 𝑦ଵ, 𝑥ଶ, 𝑦ଶ and getting the unknown curve 

𝑓(𝑋). Now, it turns out that students often try to memorise the Lagrange's interpolation 

formula, because, for many of them find it slightly difficult to interpret. But there is nothing to 

memorise the Lagrange's interpolation formula. It is a very simple formula based on a very 

cute idea. So, our goal is the following:  

 

Our goal is to find out this unknown 𝑓(𝑋) polynomial passing through the given 𝑑 +  1 x, y 

pairs. So, the idea behind the Lagrange's interpolation is that we should try to express this 

unknown 𝑓(𝑋) polynomial which we want to compute as a linear combination of 𝑑 +  1 

number of d-degree polynomials. So, I will be finding d + 1 polynomials. I am calling them as 

𝛿ଵ polynomial, 𝛿ଶ polynomial and 𝛿ௗାଵth polynomial.  

 

Each of them have individually degree-d. We will see what will be the structure of this 𝛿ଵ 

polynomial, 𝛿ଶ polynomial and so on. So, the idea is that, whatever is the 𝑓(𝑋) polynomial 

you want to compute, that can be expressed as a linear combination of these delta polynomials, 

where the linear combiners are your y elements which are given to you. So, remember, you are 

given 𝑑 +  1 number of 𝑦 elements.  

 



Now, these delta polynomials, they are not arbitrary polynomials, they are not arbitrary d 

polynomials, they are not arbitrary d-degree polynomials, but they are some special type of d-

degree polynomials. What is the speciality of this d-degree delta polynomials? So, the 

speciality is the following: If I consider the 𝛿ଵ(𝑋) polynomial, then it has d number of roots. 

And what are the roots? The roots are 𝑥ଶ, 𝑥ଷ, 𝑥ସ, … , 𝑥ௗାଵ 

 

That means, you are given 𝑑 +  1 number of 𝑥 elements. This 𝛿ଵ(𝑋) polynomial has all the 

elements except 𝑥ଵ as its root. That means, if you evaluate this 𝛿ଵ polynomial at 𝑋 = 𝑥ଶ, you 

will get the value 0. If you evaluate this 𝛿ଵ polynomial at 𝑋 = 𝑥ଷ, you will get the 0 value. And 

if you evaluate this 𝛿ଵ polynomial at 𝑋 = 𝑥ௗାଵ, you will get 0. And, if you evaluate this 𝛿ଵ 

polynomial at 𝑋 = 𝑥ଵ, you should get the multiplicative identity element namely 1.  

 

That is the property of this 𝛿ଵ polynomial. In the same way, if I consider the 𝛿 polynomial, it 

has the property that all elements except 𝑥 are its roots. Namely, if you evaluate this 𝛿 

polynomial at 𝑋 = 𝑥ଵ, you get 0; if you evaluate this 𝛿 polynomial at 𝑋 = 𝑥ଶ, you get 0 and 

so on. But, if you evaluate this 𝛿 polynomial at 𝑋 = 𝑥, you should get the multiplicative 

identity element.  
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And in the same way, if you take the d plus 1th delta polynomial 𝛿ௗାଵ, it has the property that 

all elements, all the 𝑥 elements which are given to you except 𝑥ௗାଵ are the roots. And it is easy 

to see that the way I have defined this 𝛿 polynomial; by definition itself, each of this 𝛿 

polynomial will have the degree-d. Why? Because, for each 𝛿 polynomial; 
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So, each 𝛿 polynomial has exactly d roots, and hence, degree-d. Because I know that a d-

degree polynomial can have at most d roots, but since I have defined my 𝛿 polynomials in 

such a way that they, each of them has indeed exactly d roots, that automatically ensures that 

each of my 𝛿ଵ polynomial, 𝛿ଶ polynomial, 𝛿 polynomial, 𝛿ௗାଵth polynomial, each of them has 

degree-d.  
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So, now, my claim is that this unknown 𝑓(𝑋) polynomial is nothing but this linear combination, 

namely 𝑦ଵ ⋅ 𝛿ଵ(𝑋) polynomial, 𝑦ଶ ⋅ 𝛿ଶ(𝑋) polynomial and so on. So, why 𝑓(𝑋) will have 

degree-d, because each of these delta polynomials they have degree-d's. And now, if I multiply 

a polynomial with some constant, 𝑦ଵ is a constant. So, overall, this is a degree-d polynomial.  

 



Similarly, 𝑦ଶ ⋅ 𝛿ଶ(𝑋), that will be a degree-d polynomial. And in the same way, 𝑦 ⋅ 𝛿(𝑋) 

polynomials, that will be a degree-d polynomial. And this last linear combination, it will be a 

degree-d polynomial. And now, if I sum up several d-degree polynomials, I will again get a 

degree-d polynomial. So, it is given, guaranteed that whatever 𝑓(𝑋) I compute, by computing 

this linear combination, that will be a degree-d polynomial.  
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And now, do I get the guarantees that I have in the theorem? What can I say about 𝑓(𝑥ଵ)? So, 

if I evaluate 𝑓(𝑥ଵ), then that will be same as 𝑦ଵ times 𝛿ଵ polynomial evaluated at 𝑥ଵ. But 𝛿ଵ 

polynomial evaluated at 𝑥ଵ gives me 1. Plus 𝑦ଶ times 𝛿ଶ polynomial evaluated at 𝑥ଵ. But 𝛿ଶ 

polynomial has the property that 𝑥ଶ constitutes its root. So, 𝛿ଶ polynomial evaluated at 𝑥ଵ will 

give me overall 0.  

 

That means, all the remaining terms here will give me 0. And 0 added with a non-zero element 

will give this non-zero element; and 𝑦ଵ multiplied with 1 will give me 𝑦ଵ. In the same way, 

𝑓(𝑥) will be 𝑦ଵ times 𝛿ଵ polynomial evaluated at 𝑥. But 𝑥 is 1 of the roots of delta 1 

polynomial. So, I will get 𝑦ଵ times 0 plus 𝑦ଶ times 0, because 𝛿ଶ polynomial evaluated at 𝑥 

will give me 0.  

 

And like that, it is only the ith term in this 𝑓(𝑋), which is 𝑦 times 𝛿 polynomial evaluated at 

𝑥 will survive. And remaining everything will become 0. So, this becomes 0, this becomes 0, 

last term becomes 0. It is only the ith term which will survive. So, sorry, this should be 𝑦. And 

𝛿 polynomial has the property that 𝑥 does not constitute its root. When it is evaluated at 𝑥, it 

gives me 1.  



 

So, 𝑦 into 1 will give me 𝑦. So, indeed, this 𝑓(𝑋) has all the properties. It has degree-d. And 

indeed, when evaluated at 𝑥ଵ, it gives me 𝑦ଵ; when evaluated at 𝑥ଶ, it gives me 𝑦ଶ and so on.  
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Now, if you want to see the structure of the 𝛿(𝑋) polynomial, this will be the structure of your 

𝛿(𝑋) polynomial. So, all the elements you can see. In the numerator, I have the terms of the 

form 𝑋 − 𝑥ଵ; 𝑋 − 𝑥ଶ; 𝑋 − 𝑥ିଵ. So, basically, the term 𝑋 − 𝑥 is missing in the numerator. 

Why it is missing? Because I do not want 𝑥 to be the root of this polynomial; remaining all 

elements should be the root.  

 

So, 𝑥ଵ should be root, 𝑥ଶ should be root, 𝑥ିଵ should be root, 𝑥ାଵ should be root, and so on. 

So, that is why, in the numerator I have d terms like this. And in the denominator, I have terms 

like 𝑥 − 𝑥ଵ; 𝑥 − 𝑥ଶ. So, now, you can see. Indeed, if I substitute 𝑋 = 𝑥ଵ say; then because, 

since I have in the numerator 𝑋 − 𝑥ଵ, if I substitute 𝑋 = 𝑥ଵ, I get 0 in the numerator; and hence, 

overall it becomes 0. So, like that, you substitute any value of x except 𝑥, this 𝛿 polynomial 

will vanish; it will become 0. 
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Whereas, if you substitute 𝑋, capital 𝑋 = 𝑥, then both your numerator and denominator will 

become same. And hence, it will take the value 1. So, there is nothing to memorise here. You 

just need to ensure; just remember this property that 𝛿(𝑋) has the property that all the elements 

except the ith 𝑥 element should be root. And that is possible if you write all this product terms 

in the numerator. And to ensure that, this 𝛿 polynomial takes the value 1 at 𝑋 = 𝑥. You write 

down the corresponding differences in the denominator. As simple as that.  
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So, this is your Lagrange's interpolation and this is the general form of your 𝛿(𝑋) polynomial. 

So, now, if you are wondering that this; whatever is there in the denominator, I am dividing 

the numerator by the denominator, that is not the case. Remember, all the operations are the 

field operation. In the field operation, we do not have what we call as division.  

 



Division should be interpreted as if I am multiplying the numerator with the multiplicative 

inverse of the denominator. So, let me call this entire denominator as 𝑐. And it will be a non-

zero value, non-zero element from the field. Why? Because of the fact that none of the given 

𝑥 values are same, all of them are distinct. So, if I take differences, pairwise differences, I will 

get a non-zero element.  

 

And since 𝑐 is a non-zero element, this 𝛿 polynomial should be interpreted as if I am dividing 

by 1 over 𝑐, and remaining whatever in the numerator. But 1 over 𝑐 should be interpreted as 

if I am multiplying the numerator by the multiplicative inverse of my denominator. And since 

𝑐 is non-zero; remember, one of the properties of the field is that all the non-zero elements are 

guaranteed to have its multiplicative inverse; so, multiplicative inverse here is possible.  
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Another interesting property of Lagrange's interpolation which we will require later is the 

following: Imagine you are given d + 1 x, y pairs, where the x-coordinates are distinct. We 

know as per the Lagrange's interpolation that we can compute a curve 𝑓(𝑋) passing through 

this x, y pairs. And now, imagine you are given a new x value, say you are given a new x-

coordinate 𝑥௪, which is different from all the given previous x-coordinates.  

 

And you want to compute the value of this 𝑓(𝑋) curve at 𝑋 = 𝑥௪. That means, you want to 

find out that what should be the corresponding y value. Now, since my 𝑓(𝑋) curve is this, as 

per the Lagrange's interpolation, the value of 𝑓(𝑥௪) can be computed as follows: I just 

substitute 𝑋 = 𝑥௪ in the Lagrange's interpolation formula, and then I get the value of the 𝑓 

curve at 𝑋 = 𝑥௪.  
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Now, let us see some more interesting properties of t-degree polynomials over field. So, let me 

call this set 𝒫௦,௧ to be the set of all t-degree polynomials over the field whose constant term, a 

constant coefficient is the element 𝑠. So, each such polynomial, each polynomial from this 

collection 𝒫௦,௧ will be a polynomial which will have 𝑡 +  1 coefficients.  

 

It will have the coefficient 𝑎, it will have the coefficient 𝑎ଵ, it will have the coefficient 𝑎௧. But 

since I want the constant term to be the value 𝑠, I do not have a choice for 𝑎. My 𝑎 has to be 

compulsorily 𝑠. Remaining other 𝑡 coefficients can be any element from the field. So, that is 

why, it follows that the number of polynomials 𝑓(𝑋) which are elements of this bigger set of 

polynomials whose constant term is the element 𝑠; the number of such polynomials is the 

number of elements that you can have in the field raised to the power t.  

 

Why so? Because 𝑎ଵ can take any of these many values. So, if, say for instance, the cardinality 

of 𝔽 is 10, if there are 10 elements in your field, or say 7 elements in your field, then 𝑎ଵ could 

be any of those 7 elements; 𝑎ଶ also can be any of those 7 elements, and so on. So, that is why, 

how many possible polynomials I can have? I can have these many options for the first 

coefficient.  

 

I have these many options for the coefficients for 𝑋ଶ. I have these many options for the 

coefficients for 𝑋ଷ. And like that, I have these many options for the coefficient of 𝑋௧. So, this 

is basically the number of elements in the field raised to the power t. These many possible 

polynomials you can have.  
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So, let us see an example here. Imagine my 𝑡 =  2; my field is ℤଷ; ℤଷ means, my elements 

could be 0, 1 and 2. And my plus operation here is addition modulo 3, and my multiplication 

operation here is multiplication modulo 3. And imagine my 𝑠 =  1. So, now, if I want to list 

down all possible polynomials of degree-2, where the coefficients could be either 0, 1 or 2, and 

whose constant term is 1; then that collection of polynomials as per my notation is this.  

 

And you can see that now I have, how many? 9 𝔽ଶ number of polynomials. And 𝔽 cardinality 

is basically here 3, because I have 3 elements in my field. So, 3 square, which is 9 possible 

polynomials. You can see. This is a polynomial of degree-2. You might be wondering that 

there is no term like 𝑋 and 𝑋ଶ. But that is fine, I can always imagine that I have a term like 0 𝑋 

and 0𝑋ଶ.  

 

So, overall this will be treated as a polynomial of degree-2 whose constant term is 1. This is a 

polynomial of degree-2 whose constant term is 1; another polynomial. So, all the polynomials 

have their constant term as 1, and the maximum degree could be 2, and number of such 

polynomials is 9. Now, another property which we can derive based on whatever we have 

discussed till now is the following:  

 

Imagine you are given t pairs, t x, y pairs. Pictorially you are given t number of distinct points 

in the x, y-coordinate, where this all x and y elements are elements of the field. And these x-

coordinates are different, which ensures that these points are distinct points. Now, if I take an 

element 𝑠 from the field, that 𝑠, element 𝑠 could be any element from the field; my question is, 



how many possible polynomials can be there whose constant term is 𝑠 and where this x, y pairs 

also constitute the points on that polynomial?  

 

Basically, how many polynomials from this set; so, this is the bigger set, this is the set of all 

possible t-degree polynomials whose constant term can be 𝑠. I am asking that from this 

collection, namely from 𝔽௧ number of polynomials, how many possible polynomials can be 

there whose constant term is 𝑠; namely, the point (0, 𝑠) lies on that polynomial as well as the 

remaining 𝑡 distinct points which are given to you also lie on that polynomial?  

 

And it turns out that there is only 1 possible polynomial from this set. You cannot have more 

than 1 polynomial from this set satisfying this property. This is because, you are already given 

t number of pairs, x, y pairs, t number of points, and you also want that (0, 𝑠) should also lie 

on that polynomial. So, overall, you have now t + 1 points. And through t + 1 points, you can 

have only 1 polynomial of degree-t passing through all t + 1 of them.  

 

You cannot have multiple, you cannot have a polynomial 𝑓(𝑋) belonging to this set 𝒫௦,௧, as 

well as 𝑔(𝑋) also belonging to 𝒫௦,௧ such that your 𝑓(𝑥ଵ) = 𝑦ଵ and 𝑔(𝑥ଵ) = 𝑦ଵ And like that, 

𝑓(𝑥௧) = 𝑦௧ and 𝑔(𝑥௧) = 𝑦௧. That is not possible, because that means, anyhow since both 𝑓(𝑋) 

polynomial and 𝑔(𝑋) polynomial has their constant term 𝑠; you also have the condition that 

𝑓(0) = 𝑠, 𝑔(0) = 𝑠.  

 

And hence, you get that 𝑓 and 𝑔 polynomials, even though they are different polynomials of 

degree-t, but they have t + 1 common values; that is not possible. So, that means, there can be 

only 1 𝑓(𝑋) polynomial, whose constant term is 𝑠 and whose degree is 𝑡, and which can pass 

through these given t distinct points; cannot have another 𝑔(𝑋) polynomial possible.  
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So, now, let us see another important property of t-degree polynomial. So, this property, for 

demand stating, I will consider a random experiment here. So, in this experiment, I call this 

experiment as experiment Shamir attributed to Adi Shamir, who gave this experiment. So, what 

is this experiment. So, the input to this experiment is some element 𝑠 from the field 𝔽. Now, 

the experiment does the following:  

 

It randomly picks a t-degree polynomial, call it 𝑓(𝑋), whose constant term is 𝑠. So, this notation 

∈, belongs to and subscript 𝑟, that means, this picked randomly, uniformly at random. 

Remember, there are many possible t-degree polynomials whose constant term could be 𝑠. I 

am just randomly picking one of them. And output of this experiment is the value of this 

randomly chosen polynomial at 𝑛 publicly known distinct values.  

 

So, the outputs are 𝑓(𝑥ଵ), 𝑓(𝑥ଶ), … , 𝑓(𝑥), … , 𝑓(𝑥); all of which are elements from the field; 

none of them is 0, and all of them are distinct. So, let me call the value of 𝑓(𝑥) as 𝑦. So, your 

outputs are 𝑦ଵ, 𝑦ଶ, … , 𝑦. A very simple experiment. So, now, you can see that if I run this 

experiment different times, my output could be different. First time I run this experiment with 

the input 𝑠.  

 

The polynomial 𝑓(𝑋) that I might choose might be different from the polynomial which I pick 

when I run the same experiment with the input 𝑠, because, every time I am picking the 

polynomial randomly. I am not fixing the polynomial 𝑓(𝑋); that is important. That is why this 

is a probabilistic experiment. That means, even though the 𝑥 values, 𝑥ଵ, 𝑥ଶ, … , 𝑥, they will be 



fixed for each instance of the experiment; fixed. Since my polynomial 𝑓(𝑋) is randomly 

chosen, my outputs 𝑦ଵ, 𝑦ଶ, … , 𝑦 can take different values with different probability.  
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Now, I want to capture, measure the following: Given this experiment, where the input 𝑠 is not 

known to you; I will not be telling you the input 𝑠; how much information about this input 𝑠 is 

learnt if I just give you any set of t output values? So, I will not give you the full set of 𝑛 output 

values, but I just gave you any set of t output values which I obtain by running this experiment. 

It is like saying the following:  

 

I am a kind of a person; I want to challenge you. I run this experiment with some input s which 

is known only to me, and I generate the 𝑛 outputs, and I give you any t of the n outputs that I 

have generated. And I challenge you, what was my input 𝑠? how much information about the 

input 𝑠 you learn? So, let us assume for simplicity that I give you the first t output values.  

 

But whatever I am discussing here, it holds even if I give you t output values which are not the 

consecutive t 𝑦 output values. So, I may give you, say 𝑦ଵ. And then, I do not give you 𝑦ଶ, but 

I give you 𝑦ଷ. And then I do not give you 𝑦ସ, and I give you 𝑦ହ and 𝑦 and so on. But overall, 

I gave you t number of 𝑦 output values. 𝑥 output values are anyhow known to you. I challenge 

you, how much information about 𝑠 you learn? The thing is, from your viewpoint, you do not 

know what was the curve 𝑓(𝑋) that I have chosen.  
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You only know that in the experiment I have chosen the curve 𝑓(𝑋) uniformly at random. But 

that 𝑓(𝑋) curve could be such that its constant term could be say an element 𝑠ଵ from the field. 

Or it could be also the case that the curve that I have chosen was such that its constant term 

was 𝑠ଶ. That means, my input in the experiment was 𝑠ଶ, and the polynomial that I evaluated, 

when evaluated at 𝑥ଵ, 𝑥ଶ, … , 𝑥௧, gives you the values, gives the output 𝑦ଵ, … , 𝑦௧.  

 

Or it could be the case that my input in the experiment was say the third element from the field, 

because I have chosen a t-degree polynomial whose constant term was the third element from 

the field and so on. So, just based on the knowledge of t output values that I give you from this 

experiment, you cannot pinpoint what was the curve that I had chosen. And hence, from your 

viewpoint, it could be any element from the field which was my input in the experiment.  

 

More formally, what we can prove here is the following: You take any 𝑦ଵ, 𝑦ଶ, … , 𝑦௧ from 𝔽. 

The probability that the 𝑦ଵ, … , 𝑦௧ that I am giving to you, and which are elements from the 

field, they are generated as an outcome of the experiment where a polynomial 𝑓(𝑋) was 

chosen, whose constant term was 𝑠, is the same as the probability that the same 𝑦ଵ, 𝑦ଶ, … , 𝑦௧ 

would have been generated, if in the experiment I would have chosen a polynomial 𝑔(𝑋) whose 

constant term would have been 𝑠ᇱ.  

 

That means, I am now going to show you, it does not matter whether my input is 𝑠 or whether 

my input in the experiment is 𝑠ᇱ; if I just focus on any subset of t output values generated in 

the experiment, with equal probability, those t output values could have been generated from 

the input 𝑠 or could have been generated from the input 𝑠ᇱ. You cannot pinpoint just based on 



the t output 𝑦 values, whether you are just seeing the output corresponding to the experiment 

run with input 𝑠 or you are seeing the output for an experiment which was executed with the 

input 𝑠ᇱ. So, let us formally prove this. So, let us consider the first probability here.  
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I want to compute the following: What is the probability that in the experiment the 𝑓(𝑋) 

polynomial is chosen randomly from this set? That means, basically I am asking here, 

experiments input was 𝑠. Because, if the polynomial is chosen from this set, that means, the 

input was 𝑠. And given this, you see the first t outcomes to be 𝑦ଵ, … , 𝑦௧. That means, that 

randomly chosen polynomial evaluated at 𝑥ଵ, 𝑥ଶ, … , 𝑥௧, gives you the values 𝑦ଵ, … , 𝑦௧.  

 

My claim is that this probability is 1 over the cardinality of the number of t-degree polynomials 

whose constant term is 𝑠. This is because 𝑦ଵ, … , 𝑦௧; (𝑥ଵ, 𝑦ଵ), … , (𝑥௧, 𝑦௧), they are t points. And 

now, if you add (0, 𝑠) also, you basically get 1 more point. Through this t + 1 points, there can 

be only 1 t-degree polynomial; call it 𝑓ᇱ(𝑋), passing through all t + 1 of them.  

 

There cannot be multiple polynomials whose constant term could be 𝑠 and satisfying or lying, 

passing through (𝑥ଵ, 𝑦ଵ), … , (𝑥௧, 𝑦௧). There can be only 1 t-degree polynomial. But I am 

choosing the polynomial 𝑓(𝑋) randomly. So, my sample space here is the set of all possible t-

degree polynomials whose constant term could be 𝑠. So, that is the cardinality of the sample 

space.  

But out of all, out of these many number of t-degree polynomials whose constant term could 

be 𝑠, there could be only 1 t-degree polynomial which satisfies the condition that 𝑓(𝑥ଵ) =



𝑦ଵ, 𝑓(𝑥ଶ) = 𝑦ଶ, … , 𝑓(𝑥௧) = 𝑦௧. That means, this condition will be true only if the 𝑓(𝑋) 

polynomial which I am randomly choosing here is actually 𝑓ᇱ(𝑋). But since 𝑓(𝑋) is randomly 

chosen, the probability that 𝑓(𝑋) = 𝑓ᇱ(𝑋) becomes overall this.  

 

In the same way, the second probability expression here, tries to capture the following. Your 

experiments input is 𝑠ᇱ because you are picking now polynomials from the set of polynomials 

whose constant term is 𝑠ᇱ, where 𝑠ᇱ is different from 𝑠. But still you want to measure the 

probability of the event that randomly chosen t-degree polynomial whose constant term is 𝑠ᇱ, 

when evaluated at 𝑥ଵ, gives you 𝑦ଵ; evaluated at 𝑥ଶ, gives you 𝑦ଶ; evaluated at 𝑥௧, gives you 

𝑦௧.  

 

Again, because of the same reasoning that we have given just now, the probability of this event 

is also the same, whatever was the probability of the above event. That means, what we have 

formally proved here is that, in this experiment, if I just give you any subset of t output values, 

I do not give you the full vector of n output values, I run the experiment with some private 

input, but I give you only a partial subset of the output, namely, I just give you; you tell me 

which t output values you want, I will give you those t output values.  

 

My claim is, from your viewpoint, those t output values could have been generated with equal 

probability both for input 𝑠 as well as input 𝑠ᇱ. And hence, you do not learn any information 

about my input for the experiment.  
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So, let me demonstrate this property with this example, where I take the field to be ℤଵ, and 

my input in the experiment is 13. And I am fixing my evaluation points to be 1, 2, 3, 4, 5. That 

means, suppose in the experiment here, my input was 13, I could have chosen any 2-degree 

polynomial whose constant term is 13. I am picking them randomly. So, imagine that I pick 

this polynomial; this is my polynomial which I have chosen.  

 

But I am not telling you this; I am running this experiment myself. And if I evaluate this 

polynomial at 1, 2, 3, 4, 5, I get these y values. Now, you come to me and ask for any 2 of the 

5 y values. Suppose I give you the first two y values, not the first two; you ask for, say the first 

and the third y value. So, I gave you 𝑦ଵ = 8 and 𝑦ଷ = 10. And now I ask you, can you tell me 

what was my input? was it 1? was it 2? was it 0? was it 5? which element from ℤଵ I have used 

as my input in the experiment?  

 

And now you can see. What I am doing here is; you can do the following: You can ask yourself 

in the mind. Is it the case that my input in the experiment was 0, and you got outputs 𝑦ଵ = 8 

and 𝑦ଷ = 10? Well, that is quite possible if in the experiment I would have chosen this 2-degree 

polynomial, because indeed, this 2-degree polynomial has its constant term 0, and when 

evaluated at 𝑥 =  1 gives you 8, and when evaluated at 𝑥 =  3 gives you 10.  

 

Or if you ask in your mind that is it the case that my input was 1 in the experiment; well, that 

is quite possible if in the experiment, I would have chosen this 2-degree polynomial and indeed 

this 2-degree polynomial when evaluated at 𝑥ଵ = 1 gives you 8 and when evaluated at 𝑥ଷ = 3 

gives you 10. And now, like that, if you ask, if you analyse in your mind that whether this 

output 𝑦ଵ = 8 and 𝑦ଷ = 10 can come from different candidate 𝑠 values, each of the candidate 

𝑠 value is equiprobable from your viewpoint.  

 

You cannot pinpoint what was my input in the experiment. It could have been any input from 

the field ℤଵ which would have given you the output 𝑦ଵ = 8 and 𝑦ଷ = 10. And hence, each 

possible input is equiprobable.  
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So, with that, I end today's lecture. Thank you. 


