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Hello everyone. Welcome to this lecture. So, now, we will see a very nice secret-sharing 

scheme called as Shamir secret-sharing, which is an efficient secret-sharing scheme for the 

threshold setting or threshold adversary for any threshold t strictly less than n.  
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And this Shamir secret-sharing scheme is based on properties of t-degree polynomials which 

we have seen extensively in the last lecture. So, let me recall the experiment Shamir which I 

had discussed in the last lecture in this experiment. Say I am a person who runs this experiment 

with some private input. My private input will be an element from the field. And in the 

experiment, what I do is, I randomly pick a t-degree polynomial whose constant term is this 

value 𝑠.  

 

How can I pick that polynomial? Well, I have to just randomly pick the coefficient 𝑎ଵ; I have 

to randomly pick the coefficient 𝑎ଶ; I have to randomly pick the coefficient 𝑎௧. And randomly 

picking these coefficients means randomly picking field elements as possible coefficients. And 

then I can say that 𝑓(𝑋) = 𝑠 + 𝑎ଵ𝑋 + 𝑎ଶ𝑋ଶ + ⋯ + 𝑎௧𝑋௧. That is equivalent to saying that I 

am picking a polynomial 𝑓(𝑋) randomly from this bigger set of all possible t-degree 

polynomials whose constant term is 𝑠.  

 

And output of the experiment is the value of this polynomial at some n publicly known distinct 

x values. So, I stress that the x components here, at which the polynomial is going to be 

evaluated will be publicly known. It is only the 𝑠 and the 𝑓(𝑋) polynomial which are the secret 

part in the experiment.  
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And in the last lecture, we had extensively proved that if I do not give you the entire set of n 

output values which I have generated in the experiment, but give you any subset of t output 

values; again I stress, any subset. It need not be the first t output values or the last t output 



values or the middle t output values. You ask me and I will give you any subset of t output 

values corresponding to the indices that you have demanded.  

 

From your viewpoint, those t output values could be the evaluation of any possible polynomial 

of degree-t, whose constant term could be 𝑠, or whose constant term could be 𝑠ᇱ, or whose 

constant term could be 𝑠ᇱᇱ and so on. You cannot pinpoint whether what polynomial or what 

was the input 𝑠 I had used in the experiment. That is what we had proved rigorously in the last 

lecture.  

 

Again, pictorially, if I give, if you have say for instance asked for the first t output values; so, 

basically, asking for the t output values means, I have given you t points on an unknown curve 

𝑓(𝑋). Why unknown curve? Because 𝑓(𝑋) was secretly chosen by me, the person who has run 

the experiment. You are only getting the output values 𝑦ଵ, … , 𝑦௧, because you asked for the 

first t output values.  

 

So, first t output values means you now have these t distinct points. What we had proved in the 

last lecture is, from your viewpoint through these t distinct points, every possible t-degree curve 

can pass. It could be the case that the curve that I had chosen was this curve, say 𝑓(𝑋) whose 

constant term is 𝑠ଵ, because (0, 𝑠ଵ) along with this t distinct point constitutes 1 possible t-

degree curve.  

 

Or it could be the case that, it is the blue curve which I have used in my experiment, and the 

constant term of this blue curve is 𝑠ଶ. And that means, 𝑠ଶ was my input in the experiment. That 

means, both the probability of the occurrence, the probability that I have run the experiment 

with this 𝑓(𝑋) curve or the probability that I have run the experiment with 𝑔(𝑋) curve is equi-

likely from your viewpoint.  

 

Or it could be the case that this is a black curve which I have usen, say ℎ(𝑋) curve whose 

constant term is another possible element from the field. That means, just based on the 

knowledge of this t points, t values, you cannot pinpoint that what was my input, whether it 

was 𝑠ଵ or 𝑠ଶ or 𝑠ଷ or any arbitrary element from the field. On the other hand, we also know the 

following:  

 



If instead of t output values, I gave you t + 1 output values. That means, I run the experiment 

with some private input 𝑠; and now, I give you t + 1 output values. It could be again, any t + 1 

output values. It could be the first set of t + 1 output values, or it could be the last subset of t + 

1 output values, or it could be any subset of t + 1 output values. Then you can completely 

determine what was my input s in the experiment.  

 

Why so? Because those t + 1 output values actually constitute t + 1 distinct points on the 𝑓(𝑋) 

curve which I have picked in this step. And we know that through Lagrange's interpolation, 

you can find out the unique t-degree curve passing through t + 1 distinct points. So, basically, 

in this experiment, what I have done is, I have chosen a random t-degree polynomial whose 

constant term was my input.  

 

And my claim is that, if you are restricted, if you are given the access only to t of the possible 

n output values, then you cannot tell what was my input. But if you are given access to t + 1 

output values that I have generated in the experiment, then you can completely find out what 

was the unique curve. Now you cannot say that through this t + 1 curve, it could be this black 

curve 𝑓(𝑋) whose constant term is 𝑠, or it could be this red curve 𝑔(𝑋) whose constant term 

could be 𝑠ᇱ.  

 

No, that cannot be possible, because, now you are given t + 1 points, and 2 different t-degree 

curves cannot have more than t common values. That is not possible. There can be 1 and only 

1 unique t-degree curve passing through the given t + 1 output values, if you are given access 

to t + 1 output values of this experiment. So, now, based on these 2 properties; what are the 2 

properties?  

 

Access up to t output values of the experiment, leaks nothing about the secret of the experiment. 

Access to t + 1 or more output values of the experiment give full knowledge of the input of this 

experiment. These are the 2 properties.  
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And this is precisely what we need to design an n, t secret-sharing scheme. So, remember, for 

an n, t secret-sharing scheme, we need a sharing mechanism, namely, we want a mechanism to 

generate n shares from the secret, in such a way that any subset, any collection of t or less 

number of shareholders should not learn anything about the secret. Whereas any collection of 

t + 1 or more number of shareholders, they will have a mechanism to get back the secret 

uniquely.  

 

And that is precisely what we have discussed till now. This experiment Shamir is nothing but 

your secret-sharing algorithm. A very beautiful scheme attributed to Adi Shamir. So, this 

Shamir is basically the S of your famous RSA public-key algorithm. And what is the public 

setup that we need to instantiate this n, t Shamir’s secret-sharing scheme? By public setup I 

mean that everyone will know that this setup is going to be used.  

 

The setup will be the description of some finite field with some abstract plus operation and 

abstract dot operation, whose cardinality is at least n. We will see why we want to have this 

restriction. And we will have the knowledge of, public knowledge of n distinct elements from 

the field which are non-zero. And this is possible because you are choosing a field whose 

cardinality is at least n, not at least n, greater than n.  

 

So, that means, apart from the 0 elements, you need at least n distinct non-zero elements also 

to be present in the field. And that is why we need this restriction. We will discuss later why 

we need this restriction. And this will be publicly known, I stress. Now, what is the sharing 



algorithm that will be used to generate the shares for the secret? So, if 𝑠 is the secret which 

needs to be shared and 𝑠 has to be an element from the field.  

 

So, that is why, in this secret-sharing scheme, unlike the secret-sharing schemes that we had 

seen till now, where all the operations were performed over a group, where the secret was an 

element of the group, shares were also elements of the group; now, we need a more powerful 

algebraic structure, namely, we now require a field where we should have the mechanism of 

both performing the plus operation as well as the dot operation.  

 

So, my secret has to be an element of the field and my shares also will be elements of the field. 

So, what will be the sharing algorithm? I randomly pick the coefficients 𝑎ଵ, … , 𝑎௧ belonging to 

the field. So, sorry for the typo, this should be belonging to 𝔽. I randomly pick t elements from 

the field. And then I define what I call as the sharing polynomials. I call this 𝑓(𝑋) polynomial 

as the sharing polynomial, where the coefficients are 𝑎ଵ, 𝑎ଶ, … , 𝑎௧. 

 

And the constant coefficient is fixed. That cannot be any random element from the field. The 

constant coefficient here is the value which we want to share, namely your secret. So, randomly 

picking the coefficients 𝑎ଵ, … , 𝑎௧. As I said in the earlier lecture, it is equivalent to randomly 

picking the polynomial 𝑓(𝑋) from the bigger set of all possible t-degree polynomials whose 

constant term is the secret 𝑠.  

 

That means, if I run this sharing algorithm again and again and again, my 𝑓(𝑋) polynomial 

will take different values. It will be different possible polynomials with different probabilities, 

depending upon what are the values of 𝑎ଵ, … , 𝑎௧. And 𝑎ଵ, … , 𝑎௧ are not deterministically 

picked, they are randomly chosen. This is because, remember, we want the sharing algorithms 

to be randomised algorithms.  

 

And what are the shares? The ith share will be the evaluation of this polynomial at 𝑋 = 𝑥. So, 

the first share will be the value of the polynomial at 𝑋 = 𝑥ଵ, the second share will be the value 

of the polynomial at 𝑋 = 𝑥ଶ and so on. That means, imagine if n is equal to, say 4. If 𝑛 =  4 

and if dealer has some secret 𝑠 which it wants to share, then it runs the secret-sharing algorithm 

with whatever is the value of t that is given to him or not given to him, which is publicly known.  

 



So, remember, t and n, their values will be publicly known. So, the dealer will pick a random 

t-degree polynomial whose constant term is 𝑠. And then, to the first party, he will give the 

evaluation of this polynomial that he has chosen at 𝑥ଵ; to the second party, he will give the 

evaluation of this polynomial at 𝑥ଶ; to ith party, it will give the evaluation of this polynomial 

at 𝑥; and to the nth party, it will give the value of the polynomial at 𝑥.  

 

And everyone will know that the party 𝑃ଵ is getting the value of dealer's polynomial, sharing 

polynomial at 𝑋 = 𝑥ଵ. That will be a public knowledge. But what is the polynomial dealer has 

used? That is a private input. That is known only to the dealer. And remember, when dealer is 

communicating the shares to the respective parties, it is happening over a private channel 

between the dealer and that specific party; that is an assumption.  

 

So, remember, we are making the assumption that there is a secure channel between the dealer 

and every shareholder. So, now let us see whether this simple secret-sharing scheme satisfies 

the correctness and the privacy property. But before going into that, let us verify whether this 

secret-sharing scheme is efficient or not. So, unlike your secret-sharing scheme by Benaloh et 

al. and Ito et al. which we had seen in earlier lectures for the n, t threshold setting, where the 

number of shares could be exponentially large; here, each party is just getting 1 field element.  
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So, secret size here is 1 field element. And share size, each share size, namely, each party gets 

just 1 field element as a share. Unlike your two secret-sharing schemes which we had discussed 

earlier, where depending upon the number of authorised subsets or the number of forbidden 



subsets where a party can belong, a party may end up getting exponentially many number of 

elements as potential shares.  

 

But here, it does not matter. We are first of all, not dividing the set of n shareholders into 

groups. We are just doing 1 step action; take a polynomial, evaluate at n values, distribute, that 

is all. And that is why this scheme is a very efficient scheme. It does not require the dealer or 

the parties to perform exponential amount of computation, communication, or it does not 

require exponential amount of storage. So, now, the efficiency part is very easy here to verify. 

Now, let us see whether the correctness and the privacy requirements of secret-sharing are 

satisfied.  
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For correctness, we have to prove that, if a group of t + 1 shareholders come together, then 

whether they will be able to get back the secret or not. And the answer is yes. Because, if any 

subset of any group of t + 1 shareholders come together, and they tell each other their respective 

shares that they have got from the dealer, then by applying the Lagrange's interpolation, they 

can uniquely get back the polynomial, entire polynomial 𝑓(𝑋) that dealer has chosen.  

 

And once 𝑓(𝑋) is reconstructed back, they just have to take the constant coefficient of that 

𝑓(𝑋) polynomial that is the secret 𝑠. So, correctness property is satisfied. Now, let us see 

whether the privacy property is satisfied. For privacy, we have to argue that if you take any 

group of t or less number of shareholders, they learn absolutely nothing about the secret. And 

we have rigorously formalised; what do we mean by learning absolutely nothing about a secret?  

 



That means that from the viewpoint of those t shareholders, the probability distribution of the 

shares that they will see or they will receive from the dealer is should be independent of the 

dealer's secret. And this is what we had precisely proved as part of the properties of the 

experiment Shamir. This Shamir’s secret-sharing algorithm is equivalent, is precisely your 

experiment Shamir which we had rigorously analysed in the last lecture.  

 

And in the last lecture, we had formally proved that, if someone runs this experiment Shamir 

with some private input s, and just gives any subset of t outputs generated in the experiment, 

then the probability distribution of those t output, those could, will be independent of what 

exactly is the value of s with which the experiment has been executed. And that is precisely is 

what we want to argue as part of the privacy property of your Shamir’s secret-sharing.  

 

That is why; and this holds, even if the group of those t shareholders who want to learn the 

secret are computationally unbounded, even if they are given unbounded time resources, from 

their viewpoint, it could be any t-degree curve with which dealer has run the sharing algorithm, 

and that t-degree polynomial when evaluated at the x-coordinates corresponding to the t parties, 

gives the corresponding y value. They cannot pinpoint what exactly was the t-degree x t-degree 

𝑓(𝑋) curve with which D participated in the experiment. So, that proves the privacy property 

as well.  
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So, it is a very simple looking, but a very elegant construction. And this is one of the most 

popular cryptographic primitives used in several real-world scenario. So, now, you might be 

wondering that why we want a field here. So, remember, all the operations in the Shamir’s 



secret-sharing protocol algorithm requires operations to be performed over the field. The Secret 

has to be an element of the field, the shares are the elements of the field, the plus operation and 

the dot operations, all of them are performed over a field, unlike your previous secret-sharing 

schemes where just a group was sufficient.  

 

Now, you might be wondering that why it matters whether I perform a operation on the ring or 

a field or a group. The thing is, if I want to deploy, implement this scheme inside my computer, 

then I have to implement this field plus operation and field dot operation on top of the computer 

plus and computer dot operation, because this plus and this dot operation, the field plus and the 

field dot operation is not exactly the integer plus an integer dot operation, or the way computers 

perform the plus operation or the dot operation.  

 

So, for instance, this plus and dot operation could be addition modulo n and multiplication 

modulo n, where after every addition, you have to do a modulo. And that will be the overall 

plus operation. So, that is why, I would prefer a secret-sharing protocol where the plus 

operation, the dot operations are actually same as my computer plus and computer dot 

operation, because, then I do not have to worry about separately implementing the plus and the 

dot operation of the corresponding algebraic structure which I am using in my secret-sharing 

algorithm.  

 

So, for instance, if I could have performed Shamir Shamir’s secret-sharing algorithm over a 

ring, modulo 2 power l, where l is some parameter, then that is precisely performing computer 

operations over l bit registers. So, I do not have to separately worry about the plus and the dot 

operation of the ring. So, that is why, the choice of the underlying algebraic structure which is 

used inside your algorithm matters a lot.  

 

So, now, for Shamir’s secret-sharing, we need a field. The question is, why cannot I perform 

the operations over the integers? By the way, the integer plus operation and integer dot 

operation, the set of integers along with plus and dot do not constitute a field, because, we do 

not have multiplicative inverse for several elements and so on. So, the question is, if instead of 

performing the operations over the field, if I perform the operations over the integers, where 

the plus and the dot operations are the integer plus and the integer dot operation, will I still get 

the privacy guarantees? will I still get the correctness guarantees?  

 



And the answer for both these questions is no. So, let us first try to understand that why the 

privacy will break if instead of performing operations over the field, I pick, I perform the 

operations over the integers. So, I denote a set of integers as ℤ. So, to demonstrate the 

weakness, let us take a very simple case. Suppose my 𝑡 =  1, n could be anything. And my 

𝑥ଵ, 𝑥ଶ, … , 𝑥 are 1, 2, 3, 4, 5, 6.  

 

So, if there are n parties, the ith party will get the value of dealer's polynomial at 𝑋 = 𝑖. And 

now let us try to mimic Shamir’s secret-sharing algorithm assuming all the operations are 

performed over the integers with t = 1. And imagine that dealer's secret is now an integer value, 

it is no longer a field element, it is an element from the set of integers. It could be negative, it 

could be positive, anything.  

 

So, now, what the dealer has to do? If it is mimicking Shamir’s secret-sharing algorithm with 

𝑡 =  1, it has to pick a polynomial, random polynomial of degree-1. That is what it has to do. 

Whose constant term should be the integer s? So, suppose it picks the polynomial 𝑓(𝑋), which 

is 𝑠 plus the coefficient of 𝑋ଵ being 𝑣 − 𝑠 were 𝑣 is a randomly chosen integer. So, the 

requirement would have been, he has to pick the coefficient 𝑎ଵ randomly, the dealer.  

 

And indeed, the coefficient 𝑎ଵ which is 𝑣 − 𝑠 will be random, if 𝑣 is randomly chosen. If 𝑣 is 

a randomly chosen integer, then irrespective of what is the value of 𝑠, the value 𝑣 −  𝑠 will 

also be a random integer. So, now he computes the shares. So, the share for the first party will 

be the value of this polynomial at 𝑥 =  1, with no mod operation. It is a usual integer plus and 

integer multiplication. So, f of 1 will be 𝑠 +  𝑣 −  𝑠. 𝑠 and 𝑠 cancels out; so, that is why the 

first share will be the value 𝑣.  
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The value of the second share will be the value of this 𝑓 polynomial at 𝑥 =  2, which will be 

2 × 𝑣 –  𝑠 and so on. Now, what is the value of t? 𝑡 =  1 here. So, this secret-sharing 

instantiation should have the property that, if I take any single share, say the share of the first 

party or the share of the second party or the share of the ith party, that should be independent, 

that should have nothing to do with what is the value of the secret 𝑠 which dealer has shared.  

 

That is a privacy property. Namely, just 1 shareholder, he alone should not be able to learn 

anything about the secret, because I have instantiated this protocol with t = 1. Whereas, any set 

of 2 or more number of shareholders, they should be able to come together and get back the 

secret. That is the correctness requirement. Now, if I consider 𝑦ଵ, the value of the first share is 

𝑣, and 𝑣 is a randomly chosen integer, independent of the value of the secret, so, it does not 

leak anything about the secret; that is fine.  

 

But what about 𝑦ଶ? Suppose, if 𝑃ଶ is very curious and it is try to learning something about the 

underlying secret, the secret-sharing algorithm should have ensured that if 𝑃ଶ is curious and try 

to learn anything about dealer's secret, he should not learn anything. For him, it could have 

been any integer which dealer has shared; and he got this share; from the viewpoint of the 

second shareholder, it could have been any integer value, which dealer has shared and the 

second shareholder got this value 𝑦ଶ.  

 

But if you see here closely, the value of the second share is the integer value, I stress, integer 

value, 2𝑣 − 𝑠, which will be an even value if and only if dealer's secret would have been an 

even value. Because, 2 times v will be an even quantity. And now, from an even quantity, if 



you subtract some quantity, the overall result will be; or the event depending upon whatever 

you have subtracted is odd or even, respectively.  

 

That means, if the value of 𝑦ଶ, that means 𝑃ଶ who is the second shareholder, if he compares 𝑦ଶ 

and checks whether it is odd or even; if it is odd, then he can simply tell that, okay, dealer's 

secret was an odd integer, it cannot be an even integer. And that is a breach of privacy, because, 

remember, the privacy property demands that, from the viewpoint of the unauthorised subset 

of parties, it could have, it should be the case that their shares should be equiprobably the shares 

for any candidate element from the secret space.  

 

And the secret space is the set of all possible integers. But now, what this second party is able 

to do is, based on whether his share is odd or even, he can narrow down whether the dealer's 

secret was an odd value or whether it is an even value. And that itself is a breach of privacy, 

which should not be allowed. That means, if I instantaneous this secret-sharing scheme, where 

I perform all the plus and dot operations as per integers, then there is a breach of privacy.  
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Now, you might be interested to know that why this would not be considered as a breach of 

privacy, if instead of performing the operations over the integers, I perform operations over a 

field. How can suddenly changing the algebraic structure make something which is not private 

with respect to integers make it private suddenly. Why it is not private with integers, but private 

if I perform the operations over field?  

 



The thing is that, again, if I perform the operations over the field rather performing operations 

with respect to integers, and if this plus and dot operations are my integer plus and dot 

operation, then I can no longer say that 2𝑣 −  𝑠 is odd, if and only if 𝑠 is odd. Because, 2𝑣 − 𝑠 

could be any element from the field irrespective of whether my s is odd or whether my s is 

even. It could be any value from the field.  

 

That means, if 𝑃ଶ is an unauthorised party, he got the value 2𝑣 − 𝑠. 𝑣 is unknown for him, 𝑠 is 

unknown for him, but this overall value is known to him. So, I am putting this values in a 

rectangular box, that means it is unknown for him. And say this overall value is 𝑦ଶ. He has this 

concrete value of 𝑦ଶ. If he thinks 𝑠 is equal to say some value 𝑎, then that is possible if 𝑣 would 

have been 𝑦ଶ plus 𝑎 multiplied with 2 inverse.  

 

That means, indeed it could be the case that dealer's secret was the field element 𝑎, and the 

random coefficient 𝑣 that dealer has chosen is this value, which would have resulted 𝑃ଶ getting 

𝑦ଶ as the field element, which is 2𝑣 − 𝑠. But 𝑣, the element 𝑣, the coefficient 𝑣 is a randomly 

chosen field element. That means, whatever is the value of 𝑠 that 𝑃ଶ could guess in his mind, 

that will give him a candidate 𝑣.  

 

And that is why 𝑃ଶ can no longer narrow down, whether he is seeing a share corresponding to 

an odd field element or an even field element. But that is not possible if; that is not the case if 

the instant operations would have been performed over integers, because, in the integer world, 

we know that 2𝑣 −  𝑠 will be odd, if and only if 𝑠 is odd, and so on.  
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So, that is why performing operations over field is important. Now, you might be wondering, 

why cannot I perform the operations over the ring instead of a field? Again, in the ring, I cannot 

say that 2𝑣 −  𝑠 could be any ring element, if 𝑣 is randomly chosen ring element. Again, 

depending upon cases, adversary can narrow down that this could be the candidate 𝑠 and this 

cannot be the candidate 𝑠. So, the summary is that, in order to achieve the privacy properties, 

Shamir’s secret-sharing scheme has to be instantiated over the field.  
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Now, what about the correctness property? Will there be a violation if instead of performing 

the operations over field, I perform operations over integers? So, again, let me demonstrate the 

problem that might occur. And this is with respect to the correctness. So, for demonstration, 

assume that my 𝑡 =  2, operations performed over integers. So, suppose 𝑡 = 2, so, that means, 

dealer has to pick a random polynomial of degree-2 whose coefficients are integer coefficients 

and whose constant term is the integer 1, 2, 3, 4.  

 

And say, we fix 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ, 𝑥ହ to be 1, 2, 3, 4, 5. So, these will be the shares. Now, imagine 

an authorised subset consisting of the second party, fourth party and the fifth party. That is an 

authorised set, because my 𝑡 =  2. That means, if 3 shareholders come together, they should 

be able to get back the secret. So, let us try to interpolate the shares 2, 1942; 4, 3402; 5, 4144. 

And Lagrange's interpolation should give us back the unique curve.  

 

So, remember, in the Lagrange's interpolation, we find out the delta polynomials, and then try 

to express the unknown polynomial which we want to reconstruct in as a linear combination 

of the delta polynomials. So, my first delta polynomial should be such that 4 and 5 should 



constitute its root. So, that is why, in the numerator, I have written terms 𝑥 −  4 into 𝑥 −  5. 

And  

when evaluated at 2, it should give me the value 1.  

 

That is why in the denominator I have written 2 - 4 and 2 - 5. You can verify the requirements 

here. So, 𝛿ଵ evaluated at 2 will give you 1, and 𝛿ଵ evaluated at 4 will be 0; 𝛿ଵ evaluated at 5 

will be 0. In the same way, the 𝛿ଶ polynomial should be such that it should vanish at 𝑥 =  2 

and 𝑥 =  5, namely, it should become 0. So, 2 and 5 should be its roots, and it should become 

1 at 𝑥 =  4. So, this will be your 𝛿ଶ polynomial.  

 

Your 𝛿ଷ polynomial should have 2 and 4 as its roots, and it should take the value 1 at 𝑥 =  5. 

So, these will be your delta polynomials. And now, remember, this division operations are now 

the integer division operations, because, now I am performing the operations over the integers. 

And in integer, dividing the numerator by the denominator means, it is an integer division, it 

is no longer multiplying with the multiplicative inverse here.  
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So, if I now simplify the individual lambda polynomials, it takes this fractional forms here. 

And now, if I implement this Lagrange's interpolation, this will be implemented as floating 

point operations. Namely, 1 over 6 will be interpreted as a floating point operation, 3 over 2 

will be interpreted as a floating point operations and so on. So, depending upon the precision 

of your floating point operations as part of your implementation, there might be some error in 

the recovery process. Namely, there might be some error in reconstructing back the dealer's 

polynomial 1234 + 166𝑋 + 94𝑋ଶ, because of this issue.  
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Whereas, if you would have performed the operations over the field, then this divisions will 

not be the integer divisions, rather, the division should be interpreted as multiplying with the 

multiplicative inverse. So, that is why, if you; and that is possible only when you perform the 

operations over a field, because multiplicative inverses, they are guaranteed only when you are 

performing the operations over the field.  

 

If you perform the operations over the ring, not every element is guaranteed to have its 

multiplicative inverse. So, that is why, for correctness sake also, you need the operations in the 

Shamir’s secret-sharing algorithm to be performed over a field.  

(Refer Slide Time: 36:44) 

 



Now, in the public setup, I assume that not only I have a field, but rather we have a finite field. 

The only restriction was that it should have n + 1 or more number of elements. So, why finite 

field? The reason we want to operate over a finite field is that, in this step of Shamir’s secret-

sharing, these coefficients, 𝑎ଵ, 𝑎ଶ, … , 𝑎௧, the coefficients of the sharing polynomial, they are 

randomly chosen.  

 

And if my field is a finite field, then sampling random field elements is relatively easier. So, 

that is why I need a finite field. Now, you might be wondering that if I perform the operations 

over a finite field, but the secret that I want to share is enormously large, it cannot be kind of 

mapped as an element of field; so, what I can do is, rather I can divide my secret into small 

pieces; each small piece, I can map to individual field elements, and then run an instance of 

secret-sharing.  

 

That is not an issue. So, this restriction of using a finite field is not going to lead to any issue 

if the secret is actually a large element. You always have mechanisms to map that large secret 

as field elements, the field that you have chosen to instantiate your Shamir’s secret-sharing and 

run the Shamir’s secret-sharing algorithm. Now, why you want the 𝑥ଵ, … , 𝑥, the evaluation 

points?  

 

So, this 𝑥ଵ, … , 𝑥, they are also called as the evaluation points, they are evaluation points fixed 

once for all. That means, once it is fixed, then for all the instantiations of Shamir’s secret-

sharing, the same 𝑥ଵ, … , 𝑥 will be used, irrespective of who is the dealer and so on; and 

publicly known. So, why they have to be non-zero? Why cannot I give say party 𝑃ଵ the value 

of the polynomial at 𝑥 =  0?  

 

Why cannot I say that 𝑥ଵ; why 𝑥ଵ = 0 not allowed? Well, if I make 𝑥ଵ to be 0, then basically 

𝑃ଵ is going to learn the value of the secret itself, because 𝑓(0) will give the value of the secret 

which dealer wants to share. And we do not want the 𝑃ଵ alone just to learn the secret. Only 

when 𝑃ଵ is a part of an authorised subset, he should learn the secret. So, that is why, none of 

these evaluation points we can afford to set as 0.  

 

They have to be the non-zero elements. And now, the final restriction that, why they have to 

be distinct? Why cannot I give 𝑃ଵ the value of say 𝑓(1) and 𝑃ଶ also the value of 𝑓(1) and 𝑃ଷ 



also the value of 𝑓(1) and so on? Well, in that case, if say 𝑃ଵ and 𝑃ଶ, they are authorised set, 

then they would not have sufficient number of shares or sufficient number of distinct points on 

the dealer's polynomial to interpolate it back, because both 𝑃ଵ as well as 𝑃ଶ have the same point 

on the dealer's unknown polynomial, even if they constitute authorised subset.  

 

That means, if a subset of t + 1 parties come together, only when we ensure that their evaluation 

points are distinct, namely the x components are distinct, they basically will have t + 1 distinct 

points on the dealer's sharing polynomial, and then only the Lagrange's interpolation will work 

and help you to get back uniquely the dealer's sharing polynomial.  
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So, with that I conclude, with that I end today's lecture. Thank you. 


