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Hello everyone. Welcome to this lecture. So, the plan for this lecture is as follows: In this lecture, 

we will see the problem of perfectly-secure message transmission, which is also called as PSMT. 

We will see the problem definition and we will see that how we can solve this perfectly-secure 

message transmission problem using the help of secret-sharing. And then, we will conclude with 

what we call as the private-channel model in the multi-party computation.  
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So, let us start with the problem definition of perfectly-secure message transmission or PSMT in 

short. So, the setting is as follows: You have 2 nodes or parties in the network, a sender S and a 

receiver R, and they do not have any pre-shared information, and they are connected in a network 

via intermediate nodes. So, you have several paths between the sender and receiver.  

 

So, you have 1 path through the node A; you have another path through the node B and then 

followed by node A; you have a path through the node C; and then you have a path through the 

node D. And some part of the network could be under the control of a computationally unbounded 

adversary. So, I have written here, part, in quote-unquote. Of course, sender and receiver, they are 

not allowed to be under the control of the adversary; but some part of the network, that means, 

some of the intermediate nodes between S and R, could be under the control of an adversary who 

is computationally unbounded.  

 

And they are controlled by the adversary, but they will not be deviating from any protocol 

instructions. That means, if some instructions are given to the intermediate nodes, even if they are 

under the control of the adversary, they will follow the protocol instructions; but whatever 

communication is happening through those intermediate nodes, that communication will be 

forwarded to the adversary.  

 



So, what we do here is, we will abstract the underlying network by what we call as wire abstraction. 

And by wire abstraction I mean, I consider node-disjoint paths also called as vertex-disjoint paths 

between the sender and receiver. So, what does the vertex-disjoint or node-disjoint paths mean? 

Let us try to understand that in the context of this example itself.  
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So, you can consider this path S and then A and then R as 1 path. And then, even though now you 

have 2 other paths, 1 path going from S to B and B to A and then to R, and another path going 

from S to C and C to B and then B to A and then A to R; they are not node-disjoint. So, if I consider 

the path S to B and then B to A and then from A to R, and another path consisting of S to C and 

then from C to B and then from B to A and then to R; these 2 paths, they are not node-disjoint, 

because there is a common node, namely the node B which is present in both these paths.  

 

So, together these 2 paths will be abstracted as a single wire w2, between S and R. And by wire, I 

mean channel; do not consider it as a physical wire, that is just a name. Similarly, the path S, A 

and R is abstracted as channel or wire w1. And now you have a third node-disjoint path namely S 

to D and then D to R. So, there is no intermediate node here in this path, which is common in any 

of the remaining paths which we have already considered.  

 

So, overall, I can abstract this network, the intermediate nodes present between S and R as wires 

between or channels between S and R, the disjoint channels. And the reason for abstracting this 



communication as wires is the following: If any communication is happening through the node A, 

from S to R, that can be abstracted as if that communication is happening from S to R. 
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On the other hand, if some communication is happening from S to R, which involves the 

intermediate node B, and if the node B is under the control of the adversary; that means, even if 

the communication would have happened from S to C and then C to B and then B to A, that 

communication also will be under the control of the adversary; because, the node B is a common 

node along the path S to B, B to A, A to R, as well as along the path S to C, C to B, B to A and A 

to R.  

 

That means, if this single node B gets corrupt; corrupt in the sense, if it gets compromised and get 

controlled by the adversary, then the adversary can actually see the communication happening 

through 2 of the paths between S to R. Namely, the communication happening over S to B, B to 

A, A to R, as well as S to C, C to B, B to A, A to R; so, that is abstracted as if there is a single wire 

between S and R, w 2.  

 

And if it gets controlled by the adversary, then whatever communication is happening over this 

channel or the wire, will be learnt by the adversary. So, that is a way we do the wire abstraction.  
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Now, what is the goal in the perfectly-secure message transmission problem? The goal is the 

following: Sender will have some message m, which is known only to the sender. It could be a 

single bit, it could be a bit string of certain length, whatever. The goal is to derive or devise a 

mechanism which allows the sender to communicate this message m via these intermediate nodes 

to the receiver R, in such a way that even if some part, some of these intermediate nodes or some 

of these wires get controlled by a computationally unbounded adversary, the message should 

remain private.  

 

Of course, since we are assuming here that the adversary cannot cause the controlled node to 

deviate from the protocol instructions, the message will be delivered correctly, that is not an issue; 

but the goal here is to ensure the privacy of the message. And why we are calling it perfectly-

secure message transmission, because here we are trying to demand security against an adversary 

who is computationally unbounded.  

 

I stress here that the assumption here is that only a part of the network will be under the control of 

the adversary, excluding S and R. That means, it cannot be the case that all the intermediate nodes 

get controlled by the adversary. That is not possible. Because, if that would have been the case, 

then that is equivalent to saying that all the wires, w1, w2, w3, all of them are under the control of 

the adversary, then how can it be possible for the sender to communicate anything privately to the 



receiver. That means, there should be at least 1 wire or some of the wires which are not under the 

control of the adversary.  

(Refer Slide Time: 09:15) 

 

So, now, let us see that how exactly we model, that adversary controls a subset of the wires. So, 

we assume that we have a computationally unbounded adversary who can sit over some of the 

wires. And the adversary can be characterized as either a threshold adversary or a non-threshold 

adversary. So, in the threshold adversary model, we assume that if there are n wires between S and 

R, then at most t of those wires can be under the adversary's control, where t is strictly less than n 

and n is the number of wires between S and R.  

 

Whereas in a non-threshold adversary, we do not model the adversary by a threshold value t, but 

rather we will be given an adversary structure which will consist of several potential subsets of 

wires and any one of those subsets can be under the control of the adversary when the protocol 

gets executed. And this adversary structure will be a monotone adversary structure.  

 

That means, 𝛤 will consist of all the maximal subsets of wires which can potentially get corrupt 

by the adversary. So, if there is a subset say B1, then, by monotone I mean that any proper subset 

of wires of B1 will also be considered as a potentially corrupt set of wires which can get controlled 

by the adversary; same as we had done for the case of secret-sharing.  

 



So, it is easy to see that if our adversary is modelled as a threshold adversary, then of course, a 

necessary condition to solve the perfectly-secure message transmission problem is that, there 

should be at least 1 wire which is not under the control of the adversary, namely, t should be strictly 

less than n. Because, if all the n wires are under the control of the adversary, there is no mechanism, 

no way by which S can communicate its message in a perfectly private way to the receiver.  

 

Whereas, the necessary condition for solving the PSMT problem against the non-threshold 

adversary is that, my adversary structure should satisfy what we call as Q(1) condition. So, what 

does this Q(1) condition mean? This Q(1) condition mean that, if you take any subset of potentially 

corrupt wires from your adversary structure, that should not be the entire set of n wires between S 

and R.  
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That means, if I consider that, say my Gamma consists of subsets B1, B2, and like that there are 

say Bk potential unauthorised subset of wires over an adversary can sit, either the wires in B1 or 

the wires in B2 or the wires in Bk, then, when I say that my adversary structure Gamma satisfies 

the Q(1) condition, by that I mean that B1 is not the entire set of wires, or B2 is not the entire set of 

wires, or Bk is not the entire set of wires, and so on.  

 

And it is easy to see that this Q(1) condition is a strict generalisation of the t less than n condition. 

So, t less than n condition means that, you take any subset of t wires, that does not cover the entire 



set of n wires, because t is strictly less than n. That condition is strictly generalised to the Q(1) 

condition, because now the cardinality of this potentially corrupt subsets of wires could be 

different.  

 

So, B1's cardinality could be different, B2's cardinality could be different, and so on. Because, in 

the non-ratio model, there is no restriction that the size of each of this maximal potential corrupt 

subset of wires should be same.  
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So, we have seen the problem definition of perfectly-secure message transmission. Now, let us see 

that how we can solve this problem. And we will see here that, if you are given a secret-sharing 

scheme, say in the threshold model, then you can get a PSMT protocol in the threshold model; if 

you are given a secret-sharing protocol in against the non-threshold adversary, then you can design 

a PSMT protocol against the non-threshold adversary.  

 

So, let us see first for the case of threshold adversary. And for the sake of demonstration, I am 

assuming that t = 3. That means, there should be 4 or more number of wires between S and R. So, 

now imagine sender has the message m which it wants to privately communicate to the receiver. 

And to do that, what sender does is the following: It computes a vector of shares according to a n, 

t secret-sharing scheme, assuming that its secret is the message m.  

 



So, the message m which sender wants to communicate privately to the receiver is treated as the 

input for the secret-sharing algorithm. And we assume that we are given 1 such secret-sharing 

algorithm. It could be any n, t secret-sharing algorithm. We are treating the n, t secret-sharing 

scheme as a black box here. We are not interested in the underlying detail. It could be your Ito's 

scheme, it could be Benaloh's scheme, it could be Shamir secret-sharing scheme, it could be any 

n, t secret-sharing scheme.  

 

Now, the secret-sharing scheme will generate n shares for the message m. And since the sharing 

algorithm will be randomised, that is why I am using this arrow notation to denote the output of 

the sharing algorithm; I am not using the assignment operator. And now, what sender does is the 

following: It sends the first share over the first wire, it sends the second share over the second wire, 

it sends the ith share over the ith wire, and the nth share over the nth wire; as simple as that.  

 

So, intuitively, you can imagine this whole process as the message m is kind of divided into 

packets. The shares of the message here can be in interpreted as various packets, which overall 

when combined, gives you the message m. But these packets have the property that, if any t of 

these packets get compromised, gets intercepted, it does not reveal anything about the underlying 

message.  

 

That is how you can interpret the division of the message into the shares m1, m2, m3, m4 and so on. 

Now, let us see whether the privacy condition is satisfied or not here. So, what will be adversary's 

view here? Imagine there is a threshold adversary and this threshold adversary can eavesdrop the 

communication over any 3 out of the 4 wires. It could be, say the first 3 wires, the last 3 wires and 

so on.  

 

Say for instance, it eavesdrops the last 3 wires. So, it will learn the shares m2, m3, m4. But will 

learning m2, m3, m4 reveal anything to this adversary? The answer is no. Because, as per the 

property of this n, t secret-sharing scheme, these shares m1, m2, m3, m4, have the property that, if 

any subset of 3 shares are considered, then they are probability distribution is independent of the 

underlying secret which is used in the secret-sharing algorithm.  

 



And the secret which is used in the secret-sharing algorithm is nothing but the message itself. And 

this holds not only for the last 3 wires, the adversary can choose any 3 wires; it could be the first 

3 wires, or it could be the first, second or fourth wire and so on. The property of this n, t secret-

sharing scheme ensures that the probability distribution of any 3 shares out of these n shares is 

independent of the message. And hence, the privacy property is satisfied.  

 

Now, how can the receiver get back the message? So, receiver will receive the shares m1 over the 

first wire, m2 over the second wire, m3 over the third wire, and m4 over the fourth wire; and it will 

know the reconstruction algorithm of the underlying secret-sharing scheme. It can use the 

reconstruction algorithm and get back the message m. And correctness here will be satisfied.  

 

By correctness I mean, receiver will be able to recover back the sender's message correctly without 

any error, if the shares m1, m2, m3 and m4 are communicated as it is. That means, they are, their 

contents, their values are not changed. That means, even if adversary is sitting over the second, 

third and fourth wire, it has not changed any of the bits of m2 or m3 and m4. And that is guaranteed, 

because, as per my assumption, I am assuming here that adversary is an eavesdropper here.  

 

You might be wondering what if my adversary is not eavesdropper, it can tamper the contents over 

the channels which are under its control. Well, there are mechanisms to deal with that as well. But 

since the focus of this course is semi-honest adversaries or eavesdropper, we will be just focusing 

our attention on eavesdropper; namely, adversary who does not alter the contents of the messages 

communicated over the channels under its control.  

 

So, this construction will work against the threshold adversary. Now, let us see whether the above 

approach of computing shares for the sender's message and communicating over the individual 

channels, work even against a non-threshold adversary as well. And the answer is yes. So, let me 

consider a non-threshold adversary, where I consider this adversary structure. And this adversary 

structure represents here that, during the execution of a PSMT protocol, the adversary can either 

control the wire w1, or it can control together the second and third wire, or it can control only the 

fourth wire.  

 



So, now you can see, the cardinality of different subsets in this adversary structure are different. It 

is not the case that the cardinality of all the subsets in this adversary structure is the same. So, now, 

let us see whether sender can securely communicate the message here. So, we will run the non-

threshold secret-sharing scheme by Ito et al. And if you recall what we do in the secret-sharing 

scheme of Ito et al., we find out the number of subsets in the adversary structure.  

 

So, we have 3 subsets here. This is 1 bad subset, another bad subset and another bad subset. And 

the idea behind the Ito's secret-sharing scheme is that, we divide the secret into so many pieces 

that for each potential bad set in the adversary structure, there should be some piece which should 

not be available with the parties in that bad set. So, since we have 3 bad sets here, the secret or the 

sender's message is divided into 3 shares m1, m2, m3, which are random, and which will have the 

property that they sum up to the message m.  

 

So, here I am assuming that the message m is an element of the group, and the group has a plus 

operation. Now, the first share of the message, m 1 needs to be communicated to the receiver. 

Through which of the channels it will be communicated? So, again, m1 is communicated over all 

the channels except the channels in the bad subset B1. So, the bad subset B1 has wire 1.  

 

So, wire 1 will not be used to communicate the first piece of the message, but through the 

remaining wires it will be communicated. And the idea here is that, if during the execution of the 

protocol, if indeed adversary controls the wires in B1, it will not be getting the piece m1. And since 

m1 will be missing for the adversary, from its viewpoint, even if it gets the remaining shares of the 

message, it could be any message which sender has communicated to the receiver.  
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In the same way, the piece m2 will be communicated to the receiver over all the channels except 

the channels in B2. So, the B2 channels, B2 subset has the channels w2 and w3. So, w2 and w3 will 

not be used to communicate m2; but over the remaining channels, m2 will be communicated. And 

again the idea here is that, if actually it is the set of wires in B2 which gets corrupt by the adversary 

during the execution of the protocol, then m2 will be missing, and hence the adversary who is 

controlling the set of wires in B2 fails to learn the message m.  
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Whereas, the third piece m3 will be communicated through all the wires except the wires in B3. 

So, B3 has wire w4; so, wire 4 will not be used to communicate m3, but m3 will be communicated 

over the remaining wires. Again, privacy is very easy to argue here. Namely, it does not matter 



which subset of wires from the adversary structure adversary controls. If it is B1, then m1 is 

missing; if it is B2, then m2 is missing; and if it is B3, then m3 is missing.  

 

That means, irrespective of which bad subset adversary controls, there is at least 1 share of m 

which will be missing; and hence, it could be any message m which sender has split and 

communicated via various channels to the receiver R. So, privacy is guaranteed.  
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Now, what about the correctness? Will receiver be able to recover back the message? Yes. Since 

we are assuming an eavesdropper here, it will be just eavesdropping the contents of the channels, 

it will not be altering the contents of the channels. And the pieces m1, m2, m3 will be arrived as it 

is, to the receiving end. And now, the receiver can apply the reconstruction algorithm of the 

underlying secret-sharing scheme, and it will recover back the message m. So, now you can see 

that if you have a perfectly-secure secret-sharing scheme, then that can be directly translated to 

obtain a perfectly-secure message transmission protocol.  
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So, that brings us to what we call as the private-channel model in secure multi-party computation 

protocols, which we will be designing later. So, very often, we use this term private-channel model 

in MPC. We will say that, we make the assumption that we are in the private-channel model. And 

by private-channel model, we mean that the parties p1 to pn who wants to perform secure 

computation, they are connected by pairwise private channels.  

 

That means, we abstract the underlying network as a complete graph. And when I say pairwise 

private channels, that means, if there are 2 parties; suppose these 2 parties are honest and honest 

means that they are not under the control of the adversary; then, by pairwise private channel, I 

mean here that whatever communication is going to happen over this channel between these 2 

parties, even if there is a computationally unbounded eavesdropper, passive adversary who is 

monitoring the communication, cannot learn anything about the underlying messages which are 

communicated by these 2 honest parties.  

 

That is what I mean by the pairwise private-channel model. Of course, if 1 of these 2 parties is the 

corrupt party, namely, under the control of the adversary, adversary will fully learn what exactly 

are the underlying messages which are communicated, because, either it will be the sender or the 

receiver of this channel. But if both the parties, namely the sender and the receiver at the receiving 

end of this channel are not under the control of the adversary, then a pairwise private channel 



means here that, even a computationally unbounded eavesdropper cannot make out anything 

regarding the communication happening between these pair of parties.  

 

So, now the question is that, how exactly we instantiate this model in practice; how we ensure that 

between every pair of parties in the system, there indeed exists a private channel; because these 

parties are finally going to be connected by internet, or they are part of a big network. The parties 

might be disturbed, located across various parts of the globe; or even if they are within the same 

city, they might be at different places and so on.  

 

So, how can we ensure that indeed there is a mechanism to do secure communication between 

every pair of honest parties? So, there are 2 ways to realise the pairwise private channels. One way 

is that, we use some perfectly-secure encryption scheme, like, say one-time pad. Or, we realise the 

private channel between these 2 parties by treating them as sender and receiver, and sender and 

receiver respectively, and executing a perfectly-secure message transmission protocol.  

 

That means, it might be the case that, even though they are not directly connected in the network, 

they are connected via intermediate nodes. If it is ensured that there are more than t + 1 number of 

node-disjoint channels between these 2 parties, and even if t of them are under the control of this 

computationally unbounded adversary, we get the effect of this direct pairwise private channel 

between these 2 parties.  

 

So, that is another way to realise a direct pairwise private channel between any pair of parties in 

the system. So, the point is that, we will abstract out the underlying network and we will make the 

assumption that the n parties, they have mechanism to do pairwise private communication. Given 

this setup, our goal will be to design a protocol for allowing the parties to perform secure 

computation.  

 

How exactly you instantiate the pairwise private channel? Well, you have one of these, you have 

either option number 1, use perfectly-secure encryption scheme, or you have the option number 2, 

use a perfectly-secure message transmission protocol.  
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So, with that, I end today's lecture. So, these are the references. So, perfectly-secure message 

transmission in itself is a very interesting well studied problem in the secure distributed computing 

community. The problem was introduced by the seminal work of Dolev et al. way back in 1993. 

And if you want to know more about perfectly-secure message transmission, then you can refer to 

this PhD thesis.  

 

The Q(1) condition; so, we have used the Q(1) condition against the non-threshold adversary model 

in our perfectly-secure message transmission protocol, but in general, we can have a condition 

called Q(k) condition. The Q(k) condition demands that you take union of any potential k subsets 

from the adversary structure that should not be the entire universal set. Universal set could be 

either the set of parties or it could be the set of wires. So, this notion of Q(k) condition was 

introduced by Hirt et al. in this paper in 1997. With that, I end this lecture. Thank you. 

 


