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Hello everyone. Welcome to this lecture. The plan for this lecture is as follows: So, in this 

lecture, we will start discussing about BGW MPC protocol, which is one of the seminal results 

in the area of secure multi-party computation. And, we will introduce the concept of shared 

circuit-evaluation.  
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So, let us first try to understand the setting of BGW MPC protocol. So, this seminal result is 

attributed to Ben-Or, Goldwasser and Wigderson; that is why it is called the BGW protocol. 

This result was published in the year 1988. Remember that we can design MPC protocols in 

various dimensions. So, let us first try to understand the dimension in which the BGW MPC 

protocol is proposed.  

 

It is a generic MPC protocol for any abstract function, where the function is represented by an 

arithmetic circuit over some finite field. It is designed assuming that the underlying network is 

a synchronous network. It tolerates a threshold adversary, where the corruption capability of 

the adversary is upper bounded by some publicly-known threshold 𝑡. The adversary here is 

assumed to be computationally unbounded. That is interesting here.  

 

And even though the paper presents the protocol for both passive corruptions as well as 

malicious corruptions; since in this course, we are dealing with only passive corruptions; we 

will right now focus on passive corruptions. That means, we will assume that up to 𝑡 parties 

can be passively corrupt, and they are computationally unbounded. In the next course, we will 

see the protocol to deal with 𝑡 malicious corruptions.  

 

And for simplicity, we will assume that the adversary is static, which decides the set of corrupt 

parties before the beginning of the protocol itself. But the protocol can be proved to be secure 

even against an adaptive adversary, but for simplicity, we will stick to static corruptions. So, 

the level of security which is provided by the BGW MPC protocol is also called as perfect 

security, because we achieve security even against an adversary who is computationally 

unbounded.  

 

So, the notion of the security achieved is also called sometimes as unconditional-security, 

because the security is not based on any computational hardness assumptions or any conditions. 

And it is also sometimes called as information-theoretic security. Historically, this is the first 

MPC protocol with these security guarantees, namely, perfect security or unconditional-

security.  

 

The protocol assumes the private-channel model, namely, it assumes that the underlying 

network is abstracted as a complete network, and there is a private channel between every pair 



of parties. How do we instantiate such private-channel model? For that, you are referred to one 

of the earlier lectures for this course. 
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So, as I said that the circuit abstraction followed by the BGW protocol is that of arithmetic 

circuit. So, here we assume that the parties have some publicly-known function over some 

finite field. That finite field could be any finite field with an abstract plus an abstract dot 

operation. And the inputs of the parties are from the field. And the function output is also a 

field element.  

 

We will make several simplifying assumptions when discussing or presenting the BGW MPC 

protocol, but all these simplifying assumptions are without loss of generality. That means, even 

if these assumptions are not there, the protocol will work; but just for making the presentation 

easier, I am making these simplifying assumptions. The first simplifying assumption is that 

each party has a single field element as an input for the function.  

 

So, I assume that party 1 has the input 𝑥1, which is a private input, and a single field element 

which is the input of the party. Similarly, 𝑃2 has a field element 𝑥2, which is the private input 

for the function and so on. Of course, one can talk about a function where 𝑃1 has several inputs 

possible for the function. Say 𝑃1 has the inputs 𝑥11, 𝑥12 and 𝑥13. And 𝑃2 might have 2 inputs, 

or 𝑚 number of inputs; say 𝑥21, 𝑥22.  

 

And 𝑃3 might have no input. 𝑃4 might have 3 inputs. So, I can design the BGW MPC protocol 

even to securely compute such kind of function, but that will require additional variables to 



keep track of how many inputs for the function are coming from each party 𝑃𝑖. So, to avoid 

doing that, we make the simplifying assumption that each party has a single input for the 

function 𝑓, that is without loss of generality.  
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We also make the simplifying assumption that there is a single function output, which is 

supposed to be learnt by everyone, publicly it is supposed to be learnt. Again, there could be 

variations. So, for instance, it could be the case that my function itself is an 𝑛-ary output 

function, in the sense that it produces 𝑛 outputs, based on the inputs of the parties, where the 

𝑖𝑡ℎ output is supposed to be learnt only by 𝑃𝑖.  

 

And these outputs could be different outputs, depending upon what is the nature of the function. 

In fact, some of the outputs could be a ⊥. That means, there is no output for that specific party. 

That also could be the case. But I make the simplifying assumption that all these output values 

are a single field element which is going to be decided based on the function and the inputs; 

and this is supposed to be learnt by everyone, publicly it is supposed to be learnt by everyone. 

Again, this is the simplifying assumption, and this is without loss of generality.  
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And the third simplifying assumption is that the function is a deterministic function. That 

means, once the values of the inputs 𝑥1, 𝑥2, . . , 𝑥𝑛 are decided, then the function, the output is 

computed as a deterministic function, as per those inputs and the description of the function. 

There is no internal randomness which is used to compute the output of the function, namely, 

the output 𝑦. Again, this is without loss of generality.  

 

We can easily modify the BGW MPC protocol to deal with the case where internal random 

field elements are generated when computing the output 𝑦, apart from the input values 

𝑥1, . . , 𝑥𝑛. So, we will abstract out this function 𝑓 with these simplifying assumptions as some 

publicly-known arithmetic circuit. That is important. The description of the arithmetic circuit 

will be publicly-known. So, for example, this could be a candidate function for 4 inputs.  

 

Each input is coming from 1 party; so, input 𝑥1 coming from first party and so on. And 

everyone will know that, okay, these are the various gates in the function 𝑓 or the various gates 

in the circuit representing the function 𝑓.  
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Now, these gates can be categorised into various categories. So, to begin with, we will have 

what we call as input gates. They are called input gates because they are the input values which 

are supposed to be contributed by the respective parties. Then, in the circuit, we will have linear 

gates or what we call as addition gate over the field. So, this gate means, we want to add the 

values 𝑥1 and 𝑥2, and I am calling the result as 𝐼1, intermediate value 𝐼1.  

 

Or, the circuit could have multiplication gates, where the multiplications are performed over 

the finite field. So, we have 2 such multiplication gates present in this example circuit. The 

first multiplication gate is performing the product of 𝑥3 and 𝑥4 and the second multiplication 

gate is performing the product of the 2 intermediate results 𝐼1 and 𝐼2, and producing output 𝐼3.  

 

Now, you might be tempted to say that, okay, this is a multiplication gate as well; but this is 

not a multiplication gate. This is a multiplication by a publicly-known constant 𝑐, where 𝑐 is 

publicly-known and an element of the finite field. So, this will be treated as a linear gate, 

because 𝑐 times 𝐼3 will be a linear function of 𝐼3. It is equivalent to performing a linear 

computation of our 𝐼3.  

 

So, this is not a multiplication gate; but rather, this is a linear gate, because this is a 

multiplication by a public constant. And then, you have finally the output gate. So, now, very 

often, people ask the question that, is it a valid simplifying assumption to assume that the 

function can be abstracted by an arithmetic circuit? Can I represent any function, any 

computation, say an SQL query computation or performing some ML operations?  

 



Can I abstract all such complex operations? Or, say the sorting algorithm; every algorithm, any 

kind of computation; can I abstract it as an arithmetic circuit over some finite field? And the 

answer is yes; this is without loss of generality.  

(Refer Slide Time: 11:40) 

 

Because, if you take any efficient algorithm or any efficient computation; computation means, 

you are running some algorithm; it could be a graph algorithm; it could be a data structure 

algorithm; it could be any kind of algorithm. We can always represent it by an equivalent 

Boolean circuit, because, finally when you run your algorithm inside your computer, it is 

converted into binary code, and that binary code will be performing a sequence of Boolean 

operations inside your computer to get the result of the output of your algorithm.  

 

That means, there will be an equivalent Boolean circuit which will be producing the same result 

as your algorithm or so called computation. Now, let us call that Boolean circuit as 𝐵𝑐𝑖𝑟. And 

it is a well-known fact that NAND gates constitute universal gates. That means, any Boolean 

circuit which might have varieties of gates like XOR gates, OR gates, AND gates, NOT gates 

and so on, can be converted into an equivalent Boolean circuit which performs the same 

computation or produces the same result.  

 

But now, the equivalent circuit will have only 2 types of gates, only AND gates and NOT gates, 

which together constitutes what we call as NAND gates. So, this is again a well-known fact. 

Now, my claim is that, that Boolean circuit consisting of just AND and NOT gates which is 

representing your underlying algorithm, can be also simulated by an equivalent arithmetic 

circuit over some finite field.  



 

By simulated, I mean I can find a corresponding arithmetic circuit 𝐴𝑐𝑖𝑟; and that circuit will be 

over the finite field where the values will be elements on the field, and all the operations will 

be only the + and the ⋅ operations over the field. But that circuit 𝐴𝑐𝑖𝑟 will produce or will have 

the same effect as if the circuit 𝐵𝑐𝑖𝑟 is performing the computation.  
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How this is possible? Well, there are several ways to do this. One obvious way is the following: 

Whatever is your finite field that you have decided; say I have decided 𝔽 to be the field ℤ𝑝 

consisting of the elements 0 to 𝑝 − 1; and my plus operation is +𝑝; and my multiplication 

operation is ⋅𝑝. Then, what I can do is the following:  

 

Wherever you have the bit 0 coming in the Boolean circuit, I decide a rule that all such 

occurrences of 0 will be now replaced by the element 0 of the field. So, if I take the field to be 

ℤ𝑝, then the element 0 of the field is basically the element 0, the integer 0. But it could be any 

other abstract field, so, the bit 0 gets mapped to the 0 of the field, the bit 1 will be now mapped 

to the element 1 of the field.  

Again, if I take ℤ𝑝 to be my candidate field, then, what I am saying is that, wherever you have 

the bit 1 coming into picture, replace it with the integer 1. Wherever in the Boolean circuit you 

have an operation, where you are performing the negation of the bit 𝑏, that operation, you now 

replace by performing this arithmetic operation. Namely, whatever is the element 1; element 1 

means the multiplicative identity element; minus the mapping of the bit 𝑏. That is, replace ~𝑏 

with 1 − 𝑏.  



 

So, again, if I take this ℤ𝑝 as my candidate field, it is easy to see that this mapping works; 

because, if my 𝑏 = 0, then ~𝑏 will be 1; if 𝑏 = 1, negation of 𝑏 will be 0. Now, let us see what 

will be the effect of performing the similar operation over the field, as per this mapping. The 

element 1 will be 1 itself, the integer 1 itself. So, 1 − 𝑏 = 0, that will produce you the result 1. 

And 1 − 𝑏 = 1 will produce the result 0 over the field.  

 

So, now, you can see, you get the same answer which you would have got in the Boolean 

circuit. The same results, now you are getting by the equivalent arithmetic operations over the 

field.  
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And now, what about the AND operation? Because, remember, in the Boolean circuit, I will 

have only 2 types of gates available, the NOT gate and the AND gate. So, if you have an AND 

gate, where the inputs are 𝑎 and 𝑏, find an equivalent gate in the arithmetic circuit, where you 

perform the multiplication of the mapped 𝑎 and the mapped 𝑏. Again, with the candidate 𝔽 that 

we have considered ℤ𝑝, this will work.  

 

So, if your bits are 𝑎 and 𝑏, then we know that the result of  𝑎 𝐴𝑁𝐷 𝑏 will be 1 only when both 

the bits are 1. And the same will be the case if I consider the product of the field element 𝑎 and 

the field element 𝑏. Because, if any of these two field elements 𝑎 or 𝑏 is 0, then the product of 

0 field element with any other field element will give me the result 0. Only when both the field 

elements 𝑎 and 𝑏 are non-zero, I will get a non-zero answer.  



 

So, that means, this mapping is always going to work; and by doing this mapping, I can always 

simulate the computations performed by the Boolean circuit by an equivalent arithmetic circuit, 

where the circuit just have values from the field and gates from the finite field.  
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So, from now onwards, we will assume that whenever we are talking about a function, I am 

basically talking about an equivalent arithmetic circuit. So, now, another thing to notice here 

is the following: If I say that if I want to compute the value of the function on the inputs 

𝑥1, . . , 𝑥𝑛, that is equivalent to evaluating this arithmetic circuit over the inputs 𝑥1, . . , 𝑥𝑛. 

Because, if the values of 𝑥1, . . , 𝑥𝑛 are made public; suppose I ask every party that, okay, you 

make the values of your respective inputs public, announce it to everyone; then, everyone can 

compute the value of the function output.  

 

Because, what they have to do is; they already know the description of the function and hence 

the corresponding arithmetic circuit; they can evaluate each and every gate of the circuit and 

obtain all the intermediate results and the final output. And this will not require any interaction 

once the inputs are made public. So, for instance, if I consider this example computation, where 

the function that we want to compute is 𝑦 =  (𝑥1 + 𝑥2) ⋅ (𝑥3 + 𝑥4) ⋅ 6; This is the overall 

function y.  

 

And now, if I take the candidate values of 𝑥1, 𝑥2, 𝑥3 and 𝑥4 to be 4, 3, 6 and 0; and say 𝑃1 

announces that, okay, my input is 4; 𝑃2 announces that, my input is 3; 𝑃3 announces that, my 

input is 6; and 𝑃4 announces that, my input is 0. Then, after that, the parties need not have to 



interact at all, and they can evaluate each and every gate, assuming that this is my field; and 

they will get the result of the function 𝑦.  

 

And this is called circuit-evaluation in clear. Why in clear? Because you are knowing the value 

of the function input, and hence, you are computing the circuit in clear, knowing each and 

every intermediate value and the final output and also the input values. But, of course, this is 

not a secure solution; because, in this solution, even though this is a very nice solution, you do 

not require any interaction among the parties; just take the inputs of the parties and evaluate 

the circuit; but a whole security is breached here, because you are learning the inputs of every 

other party.  

 

So, definitely, this is not the way we are going to compute functions securely in our MPC 

protocol, but we need to do something and evaluate the function or the equivalent circuit 

without revealing the inputs of the parties or the intermediate results.  
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And this is where the very pioneering approach of BGW comes into picture. So, the BGW 

protocol introduced what we call as shared circuit-evaluation. This is very different from 

circuit-evaluation in clear, where the inputs are announced in public, and then every party just 

locally evaluates the circuit. In this approach, every party will be evaluating a copy of the 

circuit on some values, but the circuit will be evaluated in such a way that, if I consider any 

subset of 𝑡 parties, from their viewpoint, they are basically evaluating the circuit on some 

garbage values; that is the idea here.  

 



And this ensures that, if during the circuit-evaluation any set of 𝑡 parties collude together, and 

exchange the version of the circuit they calculated among themselves, then that will not help 

them to reveal any information regarding the inputs of the parties; only the function output will 

be revealed. That is how the BGW approach performs circuit-evaluation.  

(Refer Slide Time: 22:39) 

 

So, as I said, the BGW protocol works under the assumption that 𝑡 is the number of corruptions 

in the system. And we are talking about semi-honest corruptions here. By semi-honest 

corruptions, I stress that the parties will follow the protocol instructions, they will not deviate; 

that means, they will not send wrong values or they will not crash and so on. They will honestly 

perform the protocol instructions; but they are semi-honest in the sense that, once the protocol 

gets over, they will now try to infer something about the inputs of the other parties, based on 

whatever they have learnt in the protocol, which they are not supposed to do.  

 

That is why they are semi-honest. So, the approach, the BGW approach behind this shared 

circuit-evaluation is as follows: To begin with, it will be ensured that the inputs for the function 

which are going to come from the respective parties, they are going to be made available to the 

parties in a secret-shared fashion, where the threshold of the sharing will be 𝑡, because 𝑡 is the 

maximum number of corruptions in the system.  

 

And 𝑡 is a parameter which will be publicly-known. Remember, 𝑛 is the number of parties that 

is publicly-known; 𝑡 again is a parameter which basically denotes the maximum number of 

corruptions which can happen in the system. That means, this value 𝑡 will be known, but who 



exactly are those set of 𝑡 corrupt parties, no one will know, when the protocol starts. It is only 

the adversary who knows that, okay, I am going to control these set of 𝑡 parties.  

 

So, to begin with, in the BGW shared circuit-evaluation, the inputs of the parties will be secret-

shared, and they will be secret-shared in a random way; in the sense that, each party will have 

a single share for each input of the function; and together, the vector of 𝑛 shares constitute a 

random (𝑛, 𝑡) secret-sharing for that input. What does that mean? So, if I consider this input 

𝑥1; in circuit-evaluation in clear approach, 𝑃1 would have announced publicly that this is the 

value of my input 𝑥1.  

 

We are not doing that. Instead, in the BGW approach, we are asking the party number 𝑃1, okay, 

you are the owner of the input 𝑥1, you create a secret-sharing for your input 𝑥1 by running an 

instance of an (𝑛, 𝑡) secret-sharing scheme. So, 𝑃1 will act as the dealer, because it is the owner 

of the input 𝑥1, and it will create shares of the input 𝑥1. 
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So, I am taking here the case where 𝑛 = 4 and 𝑡 = 2 for the sake of demonstration. So, it will 

create 4 random shares for its input 𝑥1, which will have the property that any set of 2 shares 

among those 4 shares, leaks no information about the input 𝑥1; but 3 or more number of shares 

are sufficient to recover back the input 𝑥1. And now, it will do the following: It will distribute 

the shares of its input. I am calling those shares as 𝑥11, 𝑥12, 𝑥13 and 𝑥14.  

 



One share of the input 𝑥1 will be given to each party. So, 𝑃1 will have its own share for its own 

input 𝑥1; 𝑃2 will have its share 𝑥12; 𝑃3 will have its share of 𝑥1, call it 𝑥13; and 𝑃4 will have its 

share for the input 𝑥1, call it 𝑥14. By doing this, it will be ensured that, if 𝑃1 is not under the 

control of the adversary; well, in this example, I am taking 𝑃1 to be under the control of the 

adversary; so, of course, it knows 𝑥1, and of course all the 4 shares; because 𝑃1 itself has 

distributed those 4 shares; and since adversary is instructing or controlling the 𝑃1, it will know 

what are those 4 shares.  

 

But consider another execution where 𝑃1 is not under the control of the adversary; it is another 

set of 2 parties. Those 2 parties will get access to 2 shares of 𝑥1, but those 2 shares will be 

insufficient to identify what exactly is the value of 𝑥1. The same thing will be now done for the 

input 𝑥2.  
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4 random shares 𝑥21, 𝑥22, 𝑥23 and 𝑥24 will be computed and distributed to the respective 

parties. It constitutes a vector of 4, 2 secret-sharing for 𝑥2. Same will be done for 𝑥3 and same 

will be done for 𝑥4. This will complete the input stage. You now see that the inputs are no 

longer announced in public, but rather they are made available in a secret-shared fashion.  
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Now, comes the interesting part, the gate evaluations. And while performing the gate 

evaluation, the parties will try to maintain what we call as BGW gate-invariant. What does this 

invariant tries to maintain? The invariant that the parties try to maintain is the following: If the 

gate-inputs are randomly (𝑛, 𝑡) secret-shared, then the parties try to ensure that even the gate-

output is made available in a secret-shared fashion.  

 

So, for instance, if the value of 𝑥1 and 𝑥2 would have been known in clear, everyone could 

have found the value of 𝐼1, the first intermediate output, because they would have to just add 

the value of 𝑥1 and 𝑥2. But right now, no one knows the exact value of 𝑥1 and no one knows 

the exact value of 𝑥2. The gate-invariant tries to ensure that, if we consider this plus gate; and 

right now, every party has its own share for the inputs of this plus gate.  

 

The inputs are 𝑥1 and 𝑥2. No one knows the value of 𝑥1 and 𝑥2, but each party has its own 

share of 𝑥1 and own share of 𝑥2. This BGW gate-invariant will try to ensure that, based on the 

shares of the inputs of this plus gate, each party is somehow able to compute a share of the 

intermediate gate-output. 
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That means, 𝑃1 will perform some computation on 𝑥11 and 𝑥21 to arrive at 𝐼11. 𝑃2 will try to 

perform some computation on 𝑥12 and 𝑥22 and arrive at this share 𝐼12. 𝑃3 will perform some 

computation on 𝑥13 and 𝑥23 and arrive at this share 𝐼13. And 𝑃4 will perform some computation 

on 𝑥14, 𝑥24 and arrive at the share 𝐼14. And together, this is 𝐼11, 𝐼12, 𝐼13 and 𝐼14 will constitute 

a vector of (4,2) secret-sharing of the clear value 𝐼1.  

 

So, in essence, what this gate-invariant is trying to do is the following: Instead of evaluating 

the gates on clear inputs and obtaining the gate-output in clear, the gates are now evaluated on 

the shares of the gate-input and somehow parties are trying to obtain the shares of the gate-

output; but in the process, no one learns what exactly was the exact value of the gate-input and 

what exactly was the exact value of the gate-output; because, everything is performed in a 

secret-shared fashion. And that is why this approach is called as the shared circuit-evaluation.  
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So, this plus gate will be evaluated like this by every party first. And then, similar thing, parties 

will do on the multiplication gate. Based on the shares of the multiplication gates, inputs of the 

multiplication gates, parties will perform some computation and obtain what we call as their 

respective shares of the intermediate value. And now, they will continue maintaining this 

invariant for all other gates, layer by layer by layer. Now, like this, once the entire circuit is 

evaluated in a secret-shared fashion;  
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By the way, maintaining this gate invariant might require interaction among the parties, 

because it may not always the case that just add the shares 𝑥11 and 𝑥21, you get 𝐼11, that may 

or may not be the case; or just multiply the shares 𝑥31, 𝑥41 and get the share 𝐼21, that may or 

may not be the case. How exactly this invariant is maintained, we will discuss that later. Right 

now, I am just explaining you the approach.  



 

But looking ahead, we will see that maintaining this invariant may require interaction among 

the parties some time, unlike the circuit-evaluation in clear, where once the inputs are made 

public, no interaction is required among the parties. Now, once the function output is computed 

in a secret-shared fashion; that means, all the gates have been evaluated, and each party now 

has its own share for the final output; the parties publicly reconstruct that output.  

 

And how they can reconstruct? Well, they can just announce their shares of this 𝑦 value to each 

other. And right now, I am assuming semi-honest corruption; that means, even the bad parties, 

they will announce the correct value of the respective share of 𝑦. Now, once every party made 

their respective shares of 𝑦 public, we will have the full vector of shares for the 𝑦 value.  

 

And now, the parties can apply the reconstruction algorithm of your secret-sharing scheme and 

reconstruct back the function output y. Now, why this shared circuit-evaluation will ensure the 

privacy property? Intuitively, what has happened in this entire shared circuit-evaluation? Each 

value, right from the input, all the way to the output, is not learnt by any party.  

 

Of course, the party who is providing a particular input, it will know that, okay, this is my input 

and I have distributed these shares for my input. But for the inputs which are not known to a 

party, for those values, all together, the adversary sees 𝑡 shares. And 𝑡 shares, as per the (𝑛, 𝑡) 

secret-sharing scheme, reveals no information about those values. And even for the 

intermediate results, assuming that this BGW gate-invariant is maintained securely.  

 

That means, starting with the inputs of the gate which are secret-shared, we obtain the gate-

output in a secret-shared fashion; and in the process, nothing additional about the gate-inputs 

and gate-output is revealed. What we are ensuring in this whole approach is that, each value 

except the output value remains secret-shared. And the degree of sharing throughout is ensured 

to be 𝑡.  

 

And adversary, even though each party is evaluating its circuit, local copy of the circuit over 

some shares, adversary, if it controls 𝑡 parties, it will see the evaluations of 𝑡 parties. Through 

those 𝑡 evaluations, basically for each value in the computation, it will get access to 𝑡 shares. 



But each value is going to be independently and randomly secret-shared with threshold 𝑡, and 

that does not help the adversary to learn any information about the intermediate results.  

 

It is only the final output which is publicly reconstructed. But that is anyhow allowed to be 

learnt by every party, and that is not a privacy breach. And that is why this BGW approach 

ensures the privacy property. So, now the big question is, how exactly the inputs are secret-

shared? And how exactly this gate-invariant is maintained? How can it be possible that without 

even knowing the gate-inputs, but every party being just given access to its share for the input 

values, somehow they magically obtain the shares of the output value? How exactly that gate-

invariant is maintained? That is precisely is the whole crux of BGW MPC protocol.  
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So, these are the references which are used for today's lecture. There are several nice papers 

available for the detailed description and analysis of BGW protocol. These two are very nice 

resources, and you are referred to them. Thank you.  
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