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Hello everyone. Welcome to this lecture. So, in this lecture, we will start going into the details 

of the BGW protocol, the exact details. And we will start with a simple case, namely, we will 

assume a function which just consists of linear gates.  
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Just to recap; this was the shared circuit-evaluation approach proposed by BGW, and all the 

generic MPC protocols follow this blueprint of shared circuit-evaluation. Namely, it ensures 

that the inputs are secret-shared and all the intermediate values in the computation are also 

secret-shared. And then, finally, you go and publicly reconstruct the function output. What will 

be different in different MPC protocols?  

 

What exactly is the secret-sharing scheme you are following? How exactly the inputs are 

shared? And how exactly the gate-invariant is maintained? But the approach or the philosophy 

remains the same in all the generic MPC protocol. So, the BGW MPC protocols follows the 

(𝑛, 𝑡) Shamir secret-sharing for instantiating this (𝑛, 𝑡) secret-sharing in this blueprint. And 

the reason it uses (𝑛, 𝑡) Shamir secret-sharing is that, it ensures that the gate-invariant can be 

maintained without requiring any interaction among the parties.  

 

So, remember, I said that maintaining this invariant may require interaction among the parties, 

depending upon the type of the gate; because, in the arithmetic circuit, we can have various 

types of gates. What I am saying here is that, if we use Shamir secret-sharing to instantiate this 

(𝑛, 𝑡) secret-sharing, then, maintaining this invariant does not require any interaction among 

the parties, if the gate which needs to be evaluated is a linear gate. And this comes from the 

linearity property of your Shamir secret-sharing. 
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So, let us quickly see, recap the linearity property of (𝑛, 𝑡) Shamir secret-sharing. This was 

your Shamir secret-sharing algorithm. If 𝑠 is the value which needs to be secret-shared, where 

𝑠 is an element from the field, then, the public setup is a finite field whose cardinality is more 



than 𝑛 and the public knowledge of 𝑛 distinct non-zero evaluation points, 𝛼1, … , 𝛼𝑛. And these 

evaluation points will be fixed once for all, for all the instantiations of Shamir secret-sharing, 

for computing the shares.  

 

So, now, if 𝑠 is the value which needs to be Shamir secret-shared, what we do is, we randomly 

pick a 𝑡-degree polynomial 𝑦 = 𝑠 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑡𝑥𝑡 whose constant term is the value 

𝑠. That means, the constant term 𝑠 is fixed, but all other remaining coefficients 𝑎1, 𝑎2, . . . , 𝑎𝑡, 

they are randomly picked from the field. And when I say a polynomial of degree-𝑡, that does 

not mean that 𝑎𝑡 is not allowed to be 0.  

 

I am following the convention that, when I say a degree-𝑡, that means, there are 𝑡 + 1 

coefficients altogether. The constant term will be the secret, the remaining coefficients can be 

0, non-zero; they are any elements from the field. So, even if they are all zeros, altogether, I 

will consider it as a vector of 𝑡 + 1 coefficients; and hence, a polynomial of degree-𝑡. That is 

the nomenclature I am following here.  

 

Also remember that this set 𝒫(𝑠,𝑡), it denotes the set of all polynomials of degree-𝑡 with 𝑠 as 

the constant term. All these things, we have discussed rigorously in our earlier lectures. And 

we know that the number of such polynomials is nothing but the cardinality of field raised to 

the power 𝑡. So, to share the value 𝑠, one such polynomial is picked uniformly at random, 

which is equivalent to saying that, pick your coefficients 𝑎1 to 𝑎𝑡 uniformly at random.  

 

And the shares are computed by evaluating this polynomial at these evaluation points 

𝛼1, … , 𝛼𝑛. And the 𝑖𝑡ℎ share will be the evaluation of the polynomial at 𝛼𝑖. I stress, every party 

will know that the 𝑖𝑡ℎ share is computed by evaluating this random polynomial at 𝛼𝑖. That is 

not private information, because the algorithm is publicly-known.  
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It is only the polynomial which is randomly decided by the dealer at the time of secret-sharing 

the value 𝑠. So, the linearity property means here the following: If you have a value 𝑠 which 

has been secret-shared through some random 𝑎-degree polynomial 𝐴, and if there is some 

public constant 𝑐, then, each party, if it multiplies its respective share of 𝑠 with the same value 

𝑐; each party does it locally; then, all together, they will obtain a vector of shares.  

 

Together, they obtain a vector of shares, I mean, each party will have the 𝑖𝑡ℎ component of that 

resultant vector; but as a whole, I am considering it as a vector. That resultant vector will be 

now (𝑛, 𝑡) secret-sharing of the value 𝑐 ⋅ 𝑠. That means, without even knowing the value 𝑠, just 

with the knowledge of 𝑐, each party can compute its share of 𝑐 ⋅ 𝑠. What does it have to do? 

Just go and multiply its share of 𝑠 with the constant 𝑐; that is all.  
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In the same way, if every party just adds the public constant 𝑐 to its respective share of 𝑠, then, 

each party gets access to its share of 𝑐 + 𝑠. And in the same way, if there is another value 𝑠′ 

which has been secret-shared by running Shamir secret-sharing, where the sharing polynomial 

is say 𝐵(𝑍), which has been picked from the set of all possible polynomials of degree-𝑡 with 

𝑠′ as the constant term; and now, if 𝑠𝑖 and 𝑠𝑖
′ are the shares of 𝑠 and 𝑠′ respectively, for the 

party 𝑃𝑖, and if every party just goes and adds its respective share of 𝑠 and 𝑠′, it will obtain its 

share of 𝑠 + 𝑠′.  

 

So, linearity here means that you can perform linear operations on the secret by performing the 

similar operation on the shares itself. That means, if you want to compute the shares of 𝑐 ⋅ 𝑠, 

multiply 𝑐 with the shares of 𝑠. If you want to compute shares of 𝑐 + 𝑠, add the value 𝑐 to the 

shares of 𝑠. If you want to compute the shares of 𝑠 + 𝑠′, add the shares of 𝑠 and 𝑠′.  
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So, now, with this observation, we will go and see the BGW MPC protocol for the simple case 

where the function that the parties want to compute is a linear function. And again, there are 

plenty of real-world examples, real-world computations which can be abstracted by linear 

functions itself. So, the setting here is the following: So, this is the theorem statement that I am 

quoting from the BGW paper. You have the set of parties, which I denote by 𝒫.  

 

And we are in the private channel model. And assume that there is a publicly-known function 

𝑓 over the field, which is a linear function. That means, it takes the inputs 𝑥1, 𝑥2, . . , 𝑥𝑖 , … , 𝑥𝑛 

from the respective parties; and the output is 𝑐1 ⋅ 𝑥1 + 𝑐2 ⋅ 𝑥2 + ⋯ . +𝑐𝑛 ⋅ 𝑥𝑛 , where 



𝑐1, 𝑐2, … , 𝑐𝑛 are publicly-known constants from 𝔽; because, this is the form of any linear 

function over the field.  

 

So, for instance, if I take 𝑛 = 4, then the inputs are 𝑥1, 𝑥2, 𝑥3 and 𝑥4, and this is the 

corresponding arithmetic circuit. So, as I said, there can be several real-world functions which 

can fall under these categories. If you remember the toy summation protocol; the summation 

protocol is basically a linear function, because your constant 𝑐1, 𝑐2, . . , 𝑐𝑛 are 1, all. So, like that, 

there are several interesting linear functions which the parties may want to securely compute.  
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Now, what the BGW theorem says here for the linear functions is the following: If you are in 

the private channel model and if there is a semi-honest adversary controlling any set of 𝑡 

parties, where 𝑡 of course has to be strictly less than 𝑛; then, still there exists a secure MPC 

protocol for computing this function 𝑦. And this holds even if the 𝑡 corrupt parties are 

computationally-unbounded. So, we are now going to see the proof of this theorem.  

 

The proof of this theorem will be through a protocol. And then, we will analyse the security of 

this protocol. And now, if you are wondering, why𝑡 < 𝑛? Because, if I say 𝑡 = 𝑛, then 

basically, if all the 𝑛 parties are corrupt, then, all the inputs are revealed. So, that is why, the 

trivial bound for 𝑡 is 𝑡 < 𝑛. And again, what we are going to do is, we will see the BGW shared 

circuit-evaluation for securely evaluating this function.  
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For demonstration purpose, I stick to the case where 𝑛 = 4, but whatever I am discussing here, 

it generalises for any𝑛 > 𝑡. So, this is the circuit which parties want to securely compute. What 

the first party does is the following: So, remember the first stage in the shared circuit-evaluation 

is approaches; the inputs, respective inputs of the parties for the function needs to be secret-

shared. And who should secret-share those inputs?  

 

The input owners themselves. So, 𝑃1 is the owner of the value 𝑥1. It will run an instance of 

(𝑛, 𝑡) Shamir secret-sharing, where the parameter 𝑡 is also publicly-known. Let us make 𝑡 =

2, again for the sake of demonstration. So, it will pick, namely, a 𝑡-degree polynomial whose 

constant term is 𝑥1 and compute the vector of these shares 𝑥11, . . , 𝑥1𝑛. In this case, 𝑛 is 4; so, 

it will compute 4 shares.  

 

And it will distribute the respective shares to the respective parties. So, it keeps 𝑥11 itself. It 

gives 𝑥12 over the secure channel to 𝑃2. It gives 𝑥13 over the secure channel to 𝑃3. And it gives 

𝑥14 over the secure channel to 𝑃4. So, that means, now, each party, what information regarding 

𝑥1 do they have respectively? 
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Each party now has its respective shares of 𝑥1 in their local copy of the circuit.  
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In parallel, party 𝑃2 will act as a dealer and secret-share its input 𝑥2 with the threshold 𝑡 = 2. 

So, it will compute a vector of 4 shares; it will keep the share 𝑥22 with itself; and the first share 

of 𝑥2 = 𝑥21, it will give over the secure channel to 𝑃1 and so on. And now, each party, they 

have got 1 share of 𝑥2. And remember, all the evaluations are performed over the same 

𝛼1, … , 𝛼𝑛.  

 

That means, the 𝛼1, … , 𝛼𝑛 which are used by 𝑃1 to compute the shares, will be the same as the  

evaluation points used by 𝑃2 to compute its shares of 𝑥2. 𝑃3 also will use the same set of 

𝛼1, … , 𝛼𝑛, so on. So, 𝛼1, … , 𝛼𝑛, they are not going to change; and that is why I am not bringing 

them into picture.  
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In parallel, 𝑃3 will independently secret-share its input as per Shamir secret-sharing. And now, 

everyone will have their respective shares of 𝑥3.  
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And 𝑃4 will independently generate Shamir shares for the input 𝑥4 and distribute among the 

parties. Now, before I proceed, let me stress here that; remember, Shamir secret-sharing is a 

randomised algorithm; that means, even if the parties 𝑃1, 𝑃2, 𝑃3, 𝑃4 executes this BGW MPC 

protocol with the same value of 𝑥1, 𝑥2, 𝑥3 and 𝑥4, the shares which are going to be produced in 

every instance will be different, because they depend upon the internal randomness, namely, 

the sharing polynomials which are used to compute the shares. 
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And it will not be the case that for sharing the same 𝑥𝑖, every time the same sharing polynomial 

will be picked. The coefficients of the sharing polynomial, they are picked uniformly at 

random. So, that is why, since the sharing polynomial could be picked uniformly at random, 

the shares themselves are going to take different values depending upon what precisely are 

those random coefficients.  

 

So, this completes the input stage. All the inputs are now available in an (𝑛, 𝑡) secret-shared 

fashion. Now, the parties will proceed to evaluate the gates. And what are the gates in this 

circuit here?  
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If you see closely here, all these gates are linear gates. So, this gate is a multiplication gate, but 

multiplication with a public constant 𝑐1. This second gate is also a multiplication gate, but it is 



a linear gate, because 𝑐2 is publicly-known constant and so on. And after that, there is a plus 

gate, which anyhow is a linear gate. So, remember, your computations which parties want to 

compute is,𝑦 = 𝑐1 ⋅ 𝑥1 + 𝑐2 ⋅ 𝑥2 + 𝑐3 ⋅ 𝑥3 + 𝑐4 ⋅ 𝑥4.  

 

This is the computation which parties want to securely compute. 𝑥1, 𝑥2, 𝑥3, 𝑥4, no one knows 

their values right now; they are collectively secret-shared. And since this is a linear function of 

 𝑥1, 𝑥2, 𝑥3, 𝑥4, by the linearity property of Shamir secret-sharing, if the same linear computation 

is performed on the shares of  𝑥1, 𝑥2, 𝑥3, 𝑥4, it will result in shares of 𝑦. And that is what the 

parties will do.  

 

Each party will locally compute the same linear function of the shares of  𝑥1, 𝑥2, 𝑥3, 𝑥4. And 

this, they are doing locally. By saying locally, I mean, they are not interacting. Whatever values 

they have at their own disposal, they are computing this linear function respectively. And now, 

after this, there is no other gate in the circuit. That means, the computation has been performed. 

Now, it is the time to announce the results. So, everyone announces the result publicly. Namely, 

their respective shares of 𝑦1, 𝑦2, 𝑦3 and 𝑦4 , they publicly announce.  
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And if they now publicly announce, everyone will now have the full vector of 𝑦1, 𝑦2, 𝑦3, 𝑦4, 

namely, all the shares of 𝑦. And now, they can apply the Lagrange interpolation on this vector 

of 𝑦 shares and get back the value 𝑦. That is a BGW MPC protocol. So, now we have to analyse 

whether this protocol is secure or not and so on. 
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But before going into that, we will first analyse the number of rounds required in the protocol 

and how much communication is done in the protocol. So, round complexity means the total 

number of rounds required in the MPC protocol. Communication complexity means how many 

bits are communicated in the protocol overall. And remember, by round, I mean the following: 

1 round means, compute something; send those values; and whatever the parties have sent in 

that round, receive them; that finishes 1 round.  

 

Next round, process whatever messages you have received in the previous round as per the 

protocol; and then decide what to send in this round; send those messages. And other parties 

are also doing the same. So, they will be sending something; receiving the values sent by other 

parties. And then, round ends. So, like that, we have to count how many such send-receive 

compute are performed by the parties in this BGW protocol, assuming that the parties want to 

securely compute the linear function of n inputs.  

 

So, where exactly interaction is needed in the BGW MPC protocol? The interaction is needed 

for secret-sharing the inputs of the parties. So, the first step of the protocol was, each party 

acted as a dealer and distributed shares for its respective input. So, for that, interaction is needed 

over the secure channel. If I want to implement this protocol; by interaction, I mean; say, I have 

to open the SSH socket or SSL socket and then I have to communicate my shares to the 

respective receiver over those channels.  

 

So, how many times I have to basically open the channel and communicate? That is what I am 

now trying to compute here. So, interaction is needed for sharing the inputs. And this can be 



completed in 1 round. Even though when I demonstrated the protocol, I first demonstrated that 

𝑃1 shares, and then followed by 𝑃2, and then followed by 𝑃3, and then followed by 𝑃4; but 

when you are implementing it, when 𝑃1 is secret-sharing its input, at the same time, 𝑃2 also can 

start its secret-sharing instance; because, there is no dependency between 𝑃2 sharing its input 

and 𝑃1 sharing its input; because the sharing polynomials which 𝑃1 and 𝑃2 pick, respectively, 

they are independent.  

 

So, when 𝑃1 is sending its share, at the same time, 𝑃2 also can start sending its shares, because 

the channels are independent here. So, that is why, overall it will require 1 round of 

communication. It will not be the case that the sharing is happening here in a sequential fashion; 

no; the sharing is happening in parallel. So, that is why it requires 1 round. And how much 

communication happens if I count all the instances of sharing here? So, there are 𝑛 instances 

of secret-sharing.  
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And for each instance of secret-sharing, 𝒪(𝑛) values or field elements have to be 

communicated. Each 1 field element has to be communicated to every other party, because that 

is a share. So, for 1 instance of secret-sharing, 𝑛 field elements are communicated. For the 

second sharing instance, 𝑛 field elements are communicated. For the 𝑖𝑡ℎ sharing instance, 

𝑛 field elements are communicated.  

 

And for the last sharing instance, 𝑛 field elements are communicated. So, overall, 𝒪(𝑛2) field 

elements are communicated. Of course, a party keeping its share of its own input to itself will 

not be considered as a communication; but in terms of order notation, the overall 



communication that is happening is 𝒪(𝑛2). So, these many field elements are communicated, 

and each field element can be represented by these many bits.  

 

Namely, there are these many number of field elements, and each field element can be 

represented by log of the number of elements in the field. So, since 𝑛2 such field elements have 

to be communicated throughout, the communication needed for the sharing protocol, sharing 

part is this much. Now, where else is the interaction needed in the BGW protocol, if the 

function that needs to be communicated is a linear function?  
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Well, the shares of 𝑦, they are computed locally. That does not demand any interaction among 

the parties. But then, to learn the function output, the value 𝑦, the shares of 𝑦 needs to be made 

public. Everyone has to announce the share 𝑦𝑖. So, if 𝑃𝑖 is the 𝑖𝑡ℎ party, it has to announce the 

share 𝑦𝑖 to every other party. It will be sufficient if any 𝑡 + 1 of these 𝑛 parties make their 

respective shares of 𝑦 public; but in the worst case, my 𝑡 could be all the way 𝑛 − 1. 
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That means, I may need all the 𝑛 shares. So, that is why, when I am explaining here, I will say 

that, okay, all the 𝑛 shares need to be public; but any 𝑡 + 1 shares are sufficient if they are 

made public. So, there are 2 approaches here. One approach could be that, in a single round, 

every party sends its respective share of 𝑦 to every other party. So, this will require a single 

round, and quadratic in the number of parties’ communication. Alternately, I can do the 

following:  
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A modified reconstruction: Instead of 1 round, if you are willing to give me 1 additional round 

of communication, but ask me to save the communication, I can do the following: In the 1 

round approach, every party sends its share of 𝑦 to every other party. So, that is why, single 

round but 𝑛2 communication; of course, 𝑛2 ⋅ log (𝔽) bits. But if you give me 2 rounds, then 

what I can do is the following:  



Let all the parties agree on a pre-determined party, as per the protocol itself. It could be any 

pre-determined party, any designated party; let it be the first party for simplicity. Then, in the 

first round, every party sends their respective share of 𝑦 only to that designated party. So, that 

will require 1 round and 𝒪(𝑛) communication in terms of field elements. That single party, 

now it will have all the shares of 𝑦, at the end of the first round.  
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So, it can reconstruct 𝑦. And now, in the second round, it goes and announces the result 𝑦 to 

everyone. So, that will be the second round. And how much communication happens in the 

first round? It is 𝒪(𝑛), again in terms of field elements. How much communication happens in 

the second round? Again, a single field element, which is 𝒪(𝑛). So, overall, 𝒪(𝑛) ⋅ log (𝔽) bits 

are communicated. So, there is a trade-off here.  

 

If your network is kind of very slow, where you cannot afford to communicate multiple times 

among the parties, then go for this 1 round approach. That means, if the bandwidth is not an 

issue, but number of times the parties need to open the socket and interact is the issue, then go 

for this 1 round approach. But if the bandwidth is the issue, but the network is stable and you 

can communicate as many times as possible, but the restriction is that every time you are given 

a restriction that your bandwidth is very small, then go for this 2 round approach.  

 

So, depending upon what is your primary constraint, whether it is the number of times you 

want to interact is more critical or whether it is how much you want to communicate every 

time, that is critical; you decide whether you want to go for this 1 round reconstruction 

approach or whether you want to go for this 2 round reconstruction approach.  
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So, these are the references used for discussing today's lecture. We have not yet seen the 

security analysis. We have seen only the protocol details for computing the linear function, and 

we have analysed the round and communication complexity. Thank you. 
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