
Secure Computation: Part 1
Prof. Ashish Choudhury

Department of Computer Science
Indian Institute of Science – Bengaluru

Lecture – 31

Perfectly-Secure MPC for Small Number of Parties

Hello everyone. Welcome to this lecture.

(Refer Slide Time: 00:31)

So, the plan for this lecture is as follows. In this lecture, we will focus on perfectly secure

multiparty computation involving 3 parties and among those 3 parties there could be one semi

honest corruption. We will first see the motivation for studying this special case of multiparty

computation namely the case of 3 party computation which we also called as 3PC and then we will

see a concrete protocol.

(Refer Slide Time: 01:02)

So, let us first understand the problem setting we have a set of three mutually (()) (01:08) parties

P 1, P 2, P 3. Of course, we are in the pair-wise private channel model where we assume that there

is a private channel between every pair of parties here and each party has some private input. So,

the inputs are x 1, x 2, x vaq . They could be from a ring or from a field there is no restriction on the

algebraic structure.

And there is a publically known function f and the goal is to securely compute the function f and

corruptions scenario here is that we assume that any one party out of these 3 parties can be

passively corrupted by an unbounded powerful adversary that means after the protocol it gets over

any one of these 3 parties might try to analyze the protocol transcript and try to infer anything

additional beyond its own input and the function output.

And we want to prevent any kind of leakage from happening through the protocol. So, the goal is

to design a protocol which allows the parties to compute the function with perfect secrecy and

correctness. Perfect secrecy means that the view of the semi honest corrupt party should be

independent of the inputs of the honest parties that means it can be simulated by a simulator and

by correctness we mean there is the output y which is finally obtained by the parties is the correct

output.

(Refer Slide Time: 02:57)

So, the question is why we want to focus on this specific case of 3PC because till now we are

talking about n party computation out of them t could be corrupt or we could have non-threshold

adversary, but then suddenly we are now talking about this special case of multiparty computation

where n = 3 and t = 1 and there are several reasons for doing this for studying this special case of

3PC.

The first reason is that there are customized solutions which are tailor made specifically to deal

with the setting of 3 party and tolerating one corruption that means these techniques will not be

applicable for general n party computation and tolerating t corruptions not applicable in the sense

you would not get the same efficiency which you would have obtained by applying those

techniques to the special case of 3 party computations tolerating t equal to 1 corruptions.

And those solutions those customized solutions as they are tailor made for 3PC they gives you

practically more efficient MPC protocols compared to what you could have derived by a plugging

in n = 3 and t = 1 in any generic MPC protocol. So, remember we have generic perfectly secure

MPC protocols tolerating t less than n / 2 corruptions. So, for instance, we had seen the protocol

based on Gennaro Rabin-Rabin degree reduction method.

We also have the protocol by Damgaard Nielsen and so on. So, those protocols are for any number

of parties and tolerating any t number of corruptions where t is less than n over 2. So, now I

substitute n = 3 and t = 1 in those protocols I will have a solution for the 3PC. I will have a perfectly

secure MPC protocol among 3 parties tolerating one corruption, but those solutions will be

inefficient.

They will require more communication, more number of rounds compared to the customized

solution the tailor made solutions that we have for the special case of 3PC. Moreover, another

motivation for studying this special case of 3PC is that in the protocols we do not require any

stringent requirements from the underlying algebraic structure over which the computations are

performed.

So, for instances both these protocols Gennaro Rabin-Rabin, Damgaard Nielsen they require a

finite field, they require a function over a finite field and that finite field should have cardinality

greater than n the number of parties whereas as we will see later these 3PC protocol they can be

designed, the computations in these 3PC protocols they can be performed both over the ring as

well as over the field.

They are on no stringent requirements that you need to necessarily have the function over the field.

In fact we will be seeing 3PC protocols where the computations can be performed over a Boolean

ring itself. So, you do not require a field whose cardinality is greater than the number of parties so

that is another motivation and the third motivation is that the special case of 3PC can be used for

MPC among a large population.

So, you might be wondering that these 3PC solutions it cannot be used in a scenario where there

are more than three number of parties to actually who are interested to perform computation on

their private data, but that need not be the case. What we can do is we can outsource MPC for

those large population and that outsourcing can be done to this three servers.

So, imagine you have enormous large number of parties spread geographically and they are not

interested to run the generic MPC protocols because running the generic MPC protocol over such

a huge population might be inefficient. Instead what those parties can do is they can hire these

three servers and they can make their inputs available in secret shared fashion or whatever secure

way they want among these three servers.

And then let these three servers perform the computation for all those parties compute the function

output and give back the function output to the parties and the guarantee that we obtain here is that

as long as only one of these three servers the (()) (08:06) servers is semi honestly corrupted the

privacy and the correctness of the computation is guaranteed. So, it is not the case that by deriving

techniques tailor made only for 3PC.

We cannot perform MPC computation secure MPC computation. We can actually perform secure

MPC involving multiplies parties by outsourcing the computation of those n parties to this three

servers whose service can be hired and indeed there are several practical deployments of several

3PC protocols and very nice results have been obtained. So, now we have several 3 party protocols

which can perform very fast computation in a private fashion.

(Refer Slide Time: 09:05)

So, there are several motivations we have seen already so now will see the concrete protocol and

again the protocol will be based on that blueprint of shared circuit evaluation where it will be

ensured that all the values in the computation remains secret shared among the parties with

threshold being t = 1 because there could be up to one corruption so the threshold will be t = 1.

So, it will be ensured that all the values in the computation will be secret shared and all the gates

will be evaluated in a secret shared fashion and then finally once the function output is ready in

secret shared fashion the parties go and reconstruct the function output, but now the difference

here will be we would not be using the Shamir secret sharing protocol because we now want more

efficient protocols because if we finally resort to Shamir secret sharing protocol then it is basically

resorting to the generic MPC protocol.

That is not what we want to do here. We want to design special secret sharing protocols, special

way of performing multiplication, addition, reconstruction and all those techniques will be tailor

made for the case of 3 parties. So, the secret sharing that we will be using in this MPC protocol, in

the 3PC protocol is based on replicated secret sharing. So, let us first try to understand what is this

replicated secret sharing which I will also call as RSS.

So, imagine you are given a ring R and there is no restriction on the cardinality of the ring, it could

be as simple as the Boolean ring consisting of just the values 0 and 1 where the plus operation is

actually XOR operation and the dot operation is the AND operation, but in general it could be any

ring. So, imagine there is a value s in the ring. We will say that the value is secret shared as per

replicated secret sharing or RSS shared if there exist three values from the ring s1, s2, s n.

Such that the summation of s1, s2, s3 is equal to the secret s where the summation means the plus

operation of the ring and each party Pi holds the piece si and si + 1 where if i = 3 then i + 1 means 1

because 3 + 1 will be 4, but there is no fourth party or fourth piece. So, basically we do the wrap

around and then basically by i + 1 I mean first i + 1 will denote the value 1.

So, pictorially you can imagine that P1 will have the pieces s1, s2 P2 will have the pieces s2, s3 and

P3 will have the pieces s3 s1 and it is easy to see that this 3 party replicated secret sharing satisfies

the linearity property what does linearity mean? That means that any linear function of secret

shared inputs can be computed locally that mean if there is a linear function whose inputs are

available in a secret shared fashion among these 3 parties as per this sharing semantic then the

parties can apply the same linear function.

It can compute the linear function on the secret shared value itself that means by applying the

linear function on their respective shares of the inputs they can obtain their respective shares of

the output where the shares actually constitute a replicated secret sharing of the function output.

So, imagine you have two values S and s' secret shared as per replicated secret sharing namely you

have three pieces s1, s2, s3 summing up to s.

And you have three pieces s’1, s’2, s’3 prime summing up to s' then each party can do the following.

It can P 1 can add up component wise its pieces of s and s'. So, let us take a more generic linear

function addition also is a linear function, but imagine that the parties want to compute a function

which is c times s plus d times s' that is a function which parties want to compute where c ,d are

public constants from R.

So that is a requirement but s and s' should not be revealed in the process. If that is the case then

what the parties can do is the following. The parties compute a linear combination of their

respective shares of s and s' as per the linear combiners c and d. So, party 1 it computes this linear

combination so it will obtain a pair of values, P2 will obtain a pair of values and independently P

3 will obtain a pair of values.

And now if you see that this three pieces in the sense that the values c times s1 + d times s1’ and

then c times s2 + d time s2’ and then c times s 3 + d times s3’. If you sum all of them together you

get the values c times s plus d times s' and as per the semantics of replicated secret sharing the

value c times s plus d times s' is now available in a secret shared fashion.

So that means any linear function can be computed locally and in this replicated secret sharing the

share for each party will be a pair of elements it is not one element. So, share of each party, share

of Pi = the values Si and Si + 1. So, definitely in terms of share size this is bad because if we consider

the Shamir secret sharing there the size of each share is the same as the size of the secret.

That means if secret is a single field element and the ith share also will be a field element, but here

if the secret is a field element of course all the operations I am doing here over the ring, but the

same operations can be performed over the field as well. So, imagine if my secret would have been

from a field then the share size for each party will be twice the number of elements or twice the

number of bits basically that you require to represent one field element.

So, the share size is twice compared to the secret size so that is bad, but later will see that even

though the share size is more than the secret size for each party if you perform secret shared circuit

evaluation as per the semantics of replicated secret sharing then we get more efficiency. So, that

is the sharing semantic of replicated secret sharing.

(Refer Slide Time: 17:12)

Now we have to see the protocols for sharing a value as per replicated secret sharing and now if a

value is secret shared as per replicated secret sharing how you can reconstruct it and so on. So,

imagine s is a value available with a dealer and it needs to be secret shared by the dealer. So, what

the dealer is going to do as part of the secret sharing protocol it will randomly pick three values

from the ring.

So, I am assuming that the secret is from the ring and all the computations are also performed over

the ring. So, it will randomly pick three values from the ring such that the summation of those

three values is equal to the secret S. How it can do that? So, it can randomly pick s1 and s2 and it

can then set s3 to be the difference of s and s 1 + s 2 and then the share for the ith party will be the

pair of values s i and s i + 1.

So, pictorially if P 1 is the dealer then it will do the following if it wants to secret share the value s

then it will pick three random pieces s 1, s 2, s 3 which sums up to s. His own share for the secret

share of s will be s 1, s 2 so we need not have to communicate s 1, s 2 to himself, but he has to

communicate the shares to the other two parties so he communicates those required shares over

the private channel.

Similarly, if P 2 would have the value s' which it needs through secret share it will communicate

the values s’1 , s’2 , s’3 summing up to s' and then distribute the respective shares and so on. Now,

it is easy to see that in this protocol if the dealer is honest then the privacy of s is maintained

namely among these 3 parties if one of the parties is corrupt.

And of course I am considering the case when that corrupt party is not the dealer because if the

dealer himself is corrupt then it itself it knows the full secret because itself has generated the shares.

We have to argue about the privacy when the dealer is honest. So, my claim is that if the dealer is

honest then an adversary who can corrupt any one of the remaining 2 parties does not learn any

information about the secret namely its view will be independent of the secret.

Namely whatever share it receives will be independent of the secret and that follows from the

properties of additive secret sharing which we had already seen earlier. So, imagine P 2 is bad so

what exactly will be your view? The view will be the probability distribution on the pieces s 3 and

s 1. Why probability distribution because this values s 3 and s 1 they are randomly picked they are

not fixed values.

So, that is why her view will be having a probability distribution over s 3 and s 1, but this s 3 and s

1 could be equal likely the shares for the secret s or equal likely they could be the shares for s' as

well because it is quite possible that there is a value s 2 which along with this s 1 and s 3 will give

as the secret and it is equiprobably the case that there is another value say s 2’ which along with

the same s 1 and s 3 would result in the secret s'.

But since the piece s 2 is randomly chosen in the secret sharing algorithm in this replicated secret

sharing this corrupt party cannot infer whether she is seeing the shares for the secret s or for the

secret s' that means whatever communication happens in this protocol and whatever is the view

generated for the adversary that can be easily simulated that means this adversary’s view can be

simulated and the distribution of that simulated view will have the same as the view generated in

the actual secret sharing protocol.

The protocol will require one round of communication because it is only the dealer who has to talk

and distribute the shares and it can distribute the shares independently. It is not the case that it has

to first communicate the shares s 2, s 3 and then it has to communicate the shares s 3, s 1 no because

it has independent channels with independent parties. So, it can use those channels at the same

time.

And the total communication here is 4 ring elements that means it either has one ring element to

secret share then it has to totally communicate 4 ring elements. So, now what we will do here is

the following. We will see that can we reduce the cost of this secret sharing protocol in terms of

communication of course interaction has to be there. Dealer has to distribute the shares because if

the dealer does not distribute the shares then how can secret be made available in a shared fashion.

So, definitely we cannot compromise on the number of rounds here because that is the optimal

thing here one round. We have a possibility of further improving the communication complexity

assuming that there is some pre processing phase which will be done before the actual sharing

happens and remember we had already seen the motivation for pre processing based MPC.

The idea is that if there is a scope of shifting or preponing all the complex operations in a phase

which is independent of the circuit and then using the data generated in the pre processing phase

if we can optimize, if we can make the actual shared circuit evaluation faster then there is a big

advantage and we are trying to follow the same principle here as well.

We are trying to see whether there is a possibility that the parties generates some raw data from

pre processing information in a function independent, circuit independent, input independent pre

processing phase and with the help of that raw data the actual communication complexity of this

sharing protocol gets reduced. So, the answer is yes. Imagine the pre processing phase the parties

generate random values 𝛼1, 𝛼2, 𝛼3 in a secret shared fashion.

Such that those 𝛼 values are random, but they sum up to 0. So, you might be wondering that if they

sum up to 0 then how can you say 𝛼1, 𝛼2, 𝛼3 are random? Well, it is quite possible that 𝛼1 and 𝛼2

are randomly chosen and then I set 𝛼3 to be the difference of or minus of 𝛼1 plus 𝛼2 even that will

be a random vector of three values summing up to the value 0.

So, imagine in the pre processing phase the parties interact there is a mechanism by which they

interact and generate this setup. How this setup will be generated that will be focus of our next

lecture, but imagine for the moment that whenever there is a requirement of generating such system

here namely a system of three random values summing up to 0 and P 1 having the first component,

P 2 having the second component, P 3 having the third component that is always possible.

And remember here this is not RSS sharing of 0 no because the parties know that the value 0 has

been shared, there is nothing called secret here which has been shared P 1, P 2, P 3 will know that

okay it is a zero value which has been shared P 1 will have only one of the shares namely 𝛼1, P 2

will have one of the shares namely 𝛼2 and P 3 will have the third share namely 𝛼3.

And you require here at least 2 parties to collaborate to learn the full 𝛼vector. So, if say P 1 and P

2 collaborate then they can find out what is 𝛼3 because they know that 𝛼3 when summed up with

𝛼1 and 𝛼2 should have produced a0, but if only one party tries to find out what are the remaining

two pieces it cannot find out that means if I just consider P3 will have 𝛼3, but it will not be knowing

what is the 𝛼2.

And it will not be knowing what is the 𝛼1 and it knows this sum up to 0 so it could be any 𝛼2 and

any 𝛼1 with along with 𝛼3 could sum up to 0 not any once it fixes 𝛼2 corresponding to that 𝛼2 there

will be a corresponding 𝛼1 which along with the fixed 𝛼2 and the 𝛼3 which is available with P3 will

sum up to 0 so that is the set of parties would have generated.

Assume for the moment that such pre processing is possible. Now assuming such pre processing

is possible and now say P 1 is the dealer who wants to secret share a value s then it can do it as

follows. Similar actions can be done if P 2 would have been the dealer or P 3 would have been the

dealer. So, it is not necessary that for this sharing protocol it is only P 1 who is the dealer.

For the purpose of demonstration I am just taking the case where only P 1 is the dealer, but similar

actions can be performed if P 2 is the dealer or P 3 is the dealer. Whenever a value has to be shared

by the dealer we will assume that in the pre processing phase a random vector of 𝛼, 𝛼1, 𝛼2, 𝛼3 have

been generated it is summing up to 0. Now, the idea behind this efficient sharing phase protocol is

the following.

We know that the summation of 𝛼1 and 𝛼2 and 𝛼3 is 0. Now what can we say about the summation

of s + 𝛼1 and 𝛼2 and 𝛼3? Well, we can say that the summation of these values is actually s and our

goal is to generate a secret sharing of s as per replicated secret sharing. So, based on this

observation what we can do here is the following. Party 1 who is the dealer actually will compute

this value s 1 and this value s 1 is said to be the summation of s and 𝛼1.

So, you can imagine it has an OTP encryption of the secret s which will be now given to P 3. Why

given to P 3? Because remember as per the sharing semantics of RSS the secret which has to be

shared has to be divided into three pieces summing up to the secret and each party should have

two of those three pieces. So, basically we know here from the mathematics from the algebra here

that s is actually the summation of these three pieces.

So, I can set the term here in the parenthesis as s 1. I can set 𝛼2 to be s 2, I can set 𝛼3 to be s 3. So,

now we have three pieces whose sum is actually s and we need to ensure that each party should

have two of these three pieces as per the semantics of replicated secret sharing. So, for instance, P

3 should have the third piece as well as the first piece. Third piece is already available with him 𝛼3

from the pre processing phase itself.

The first piece needs to be communicated to him and the dealer can communicate that piece to

him. In the same way the second party he already have the second piece here namely 𝛼2, but he

also needs the third piece as per the sharing semantic of replicated secret sharing and now P 3 can

provide a third piece to him the third piece namely 𝛼3 and in the same way P 1 should have both

the first piece and the second piece.

First piece it already has second piece party P 2 can provide and this will complete the replicated

secret sharing of the value s it still requires one round, but now the communication for the actual

sharing is 3 ring elements compared to 4 ring elements. So, earlier if there was no pre processing

data available and at the run time when the value s is available for the dealer to be shared if it

directly tries to secret share it as per the replicated secret sharing.

It would have required 4 ring elements, but now assuming that some raw data is available from the

pre processing phase the cost of the actual sharing be reduced from 4 to 3 ring elements. Now you

might be wondering that how much saving is from whether it is a big saving reducing the

communication from 4 ring elements to 3 ring elements. Imagine there are millions of values which

the dealer d or the party P 1 would have wanted to secret share during the MPC protocol.

And indeed even for very simple functions the encounter cases where each party has to secret share

as a dealer several values, millions of values. So, if there are millions of values which needs to be

secret shared then reducing the cost communication cost from 4 to 3 ring elements is indeed a big

saving because we are now saving one million ring elements in terms of communication at the

actual time of sharing the protocol.

Of course, you have to pay the price of the pre processing phase, but remember we are assuming

that the pre processing could have been done in advance when actual circuit, actual function is not

yet ready for computation for evaluation. Now why this modified secret sharing protocol is still

private like the earlier protocol? So, again we are taking the case when P 1 is the dealer here.

So, if the dealer is honest then we have to argue that if P 2 or P 3 is corrupt then its view is

independent of the actual secret. So, imagine if P 2 is corrupt if P 2 is corrupt then what will be its

view? Its view will be 𝛼2 because that is s2 and 𝛼3 which is s 3, but 𝛼2 and 𝛼3 they are completely

independent of the value s which is actually shared because this 𝛼2 and 𝛼3 would have been

generated in the pre processing phase.

And it has absolutely no relationship with the secret s. So, that is why a corrupt P 2 does not learn

any information whereas if we consider the case where P 3 is corrupt its view will be s 3 which is

𝛼3 and s 1 which actually has something to do with the secret, but s 1 is actually s + s, 𝛼1 and 𝛼1 is

a random element 𝛼1 is actually acting as here a onetime pad key and s 1 is acting as the one time

pad encryption.

Now since the pad 𝛼1 is not known why the pad 𝛼1 is not known to this potentially corrupt P 3? It

knows 𝛼3 fine, but it does not know 𝛼2 and 𝛼1. Even though it knows that this sum up to 0 so it

could be any 𝛼1 and corresponding to that 𝛼1 there is an 𝛼2 which would have summed up along

with 𝛼3 to be 0 and now that 𝛼1 is acting as the pad and he is getting s + 𝛼1 so that would not reveal

any information.

Now remember next time again the dealer wants to secret share a values say if P 1 again wants to

share a values say s'. We need a fresh pre processing data to be available. So, we cannot use the

same 𝛼1, 𝛼2, 𝛼3 and let the dealer use the same 𝛼2, 𝛼3 set up for sharing all the values which it

wants to secret share. For every value s which it wants to secret share there has to be an

independent.

There will to be a fresh 𝛼1, 𝛼2, 𝛼3 which has to be made available from the pre processing phase.

So, you can imagine that if in the sharing phase there are billions of values which needs to be secret

shared then in the pre processing phase we need this setup of 𝛼1, 𝛼2, 𝛼3 billion number of times to

be generated.

(Refer Slide Time: 34:58)

Now, let us see the reconstruction protocol. Assume that we have a value s which has been shared

in the replicated secret shared fashion and now we want to publically reconstruct it. Now to

publically reconstruct it we need to ensure that all the three pieces are available with every party.

Right now every party will just have two pieces. So, the way we ensure that each party has all the

3 parties have three pieces is the following.

We ask P i to sent s i + 1 to the next party next party in the sense along the circle. So, you imagine

a circular arrangement here where P 1 is followed by P 3, P 3 is followed by P 2, P 2 is followed by

P 1 and of course you can change the circular order as well that is not important. Once we fix the

circular order then we have to follow the protocol as per that circular order itself.

So, we can ask P 1 in the protocol to send the piece s 2 to P 3 that will ensure that P 3 have now all

the three pieces. We ask P 3 to send s 1 okay to P 2 and actually it should be P i to P i – 1 because 3

is sending the piece number s i – 1. Of course there can be some other ways also because if I change

the circular order then that would have followed what I have written down earlier.

But for the demonstration I am assuming this order. So, P i sends the piece s i – 1 to the i – 1th party

where if I take a P 3 to be P i then it is sending the piece s 1 so again this is not a P i – 1 so let us not

go into the formal thing here. We can come up with exact formal thing, but you can imagine that

the parties are arrange here in the circular order and we follow the circular notation in terms of

communicating the messages that P 1 should send P 2 to s 3 P 3 should send s 1 to P 2 and P 2 should

send s 3 to P 1.

And that will ensure that all the 3 parties will have all the three pieces and then they can reconstruct

back the secret. So, now the nice thing about this reconstruction is that each party now needs to

talks to only one party. It is not the case that every party has to send its share to every other party

for the full public reconstruction. Each party just need to talk to one of its neighbor.

And we can fix that one neighbor as per our circular order in the protocol. So P 1 we can fix that

it talks only to P 3, P 3 talks only to P 2, P 2 talks only with P 1 and this can happen in parallel so

that is why it takes one round of communication and total 3 ring elements are communicated and

this nice feature that each party talks only to one party was also followed in the efficient secret

sharing protocol that we had discussed earlier.

In that efficient secret sharing protocol also the dealer who was P 1 was talking only to P 3. P 3 was

talking only to P 2 and P 2 talks only to P 1. It is not the case that everyone is talking with everyone

or interacting with everyone. So, that makes this hearing protocol very nice and we will see that

we will maintain this nice property of circular communication where each party just sends or

communicate to only one of its neighbors during the circuit evaluation protocol as well.

(Refer Slide Time: 39:08)

So, now we had seen the secret sharing protocol, we had seen the reconstruction protocol, we know

that this replicated secret sharing satisfies the linearity property. Now what is left is to see whether

we can evaluate the multiplication gates also in a secret shared fashion assuming that the gate

inputs are secret shared as per replicated secret sharing. So, consider a scenario where you have a

multiplication gate in the circuit and the inputs of the gates are x and y.

And this could be any intermediate gates in the circuit so we are considering the setting when x

and y are secret shared as per the replicated secret sharing and now we want to ensure that the

output Z which is x dot y should also be somehow made available to the parties in a replicated

secret shared fashion and we will be interested to see whether this can be done non interactively

because we will prefer a method where all the gates can be evaluated in a shared fashion.

And that too non interactively because that possible that means that once all the function inputs

are secret shared then parties do not need to interact. They can just keep on evaluating their local

copies of the circuit gate by gate by gate and go all the way to the output gate and then reconstruct

a shared output, but it turns out that for multiplication gate it is not possible here to do it non

interactively.

So, the goal of the parties is to compute replicated secret sharing of x times y and x times y if I

consider then basically that will be the product of x 1 + x 2 + x 3 and y 1 + y 2 + y 3 and then this can

be written down as summation of 9 terms here 9 summands here. So, sorry for this typo this should

be x 3 so there are 9 summands here starting from x 1 y 1 going all the way to x 3 y 3.

Now, we have to see whether there is a mechanism by which we can finally write down x times y

as the summation of three pieces and each of these 3 parties having two of those three pieces

because that is the sharing semantic of replicated secret sharing. Now, with that goal in our mind

let us propose the following. Let each P i computes this term Z i. So, what does this mean? That

means the following.

So P 1 it can compute x 1 times y 1 it can compute x 1 times y 2, it can compute y 1 times x 2. Of

course it can also compute x 2 times y 2, but we do not want to have one party computing more

summands compared to other parties remember we have 9 summands here and we want to

distribute 3 summands to each of the parties. So, 3 summand should be one of the parties another

3 summands with another party and so on.

So, P 1 can take care of these 3 summands he can sum them locally and he obtain Z 1 .P 2 can

compute this summand and P 3 can compute this summand. So, it is easy to see that indeed the

summation of Z 1, Z 2 and Z 3 that is equal to x times y because of the arithmetic and now you

might be tempting to do the following to ensure that the value x times y is made available in a

replicated secret shared fashion because remember we will be finally evaluating the entire circuit

where the values will be secret shared as per the semantics of replicated secret sharing.

So, if you know want to ensure that x times y is available in a replicated secret shared fashion you

might be tempting to do the following. Ask P 1 to send Z 1 to P 3 that will ensure that P 3 has both

Z 3 and Z 1and in the same way ask P 3 to send Z 3 to P 2 that will ensure that P 2 has both Z 2 and

Z 3 and so on. Now the question is will this protocol lead to a security breach.

Remember our goal is to ensure that when we are evaluating the multiplication gates nothing about

the inputs x and y should be revealed. So, before the multiplication gate evaluation started what

information about x and y was available with the adversary. So, for simplicity assume that P 2 is

the corrupt person adversary. So, before the multiplication gate started P 2 has no information about

x 1 it has no information about y 1.

Both of these two pieces are random from its view point, but now if I ask P 3 that you give Z 3 to

P 2 so Z 3 is this value. Now out of these value P 2 already have x 3 ,y 3 so it can subtract it from Z

3 and hence that will reveal this value x 3 times y 1 and x 1 times y 3. Now, you might be wondering

that okay this does not reveal the full value of y 1 or x 1, but what we can now say is that the view

of the corrupt party the party number 2 is no longer independent of x and y because now it is

learning an additional information for x 1 and y 1 which was not available earlier.

Specifically consider the case where say x 3 = 0 it could be poss1 i1.

Now if it has x 1 then along with x 2 and x 3 it reveals the full x to the corrupt P 2 that means this

protocol definitely is not secure. Even though allowing asking the parties to compute Z 1, Z 2, Z 3

produces three pieces whose sum is equal to xy, but as soon as we ask the parties that okay you

interact these three pieces with each other to ensure that the final thing is available in a replicated

secret shared fashion the security is breached.

And the problem here is something very similar to what we faced during the degree reduction

problem. There also we saw that if x was secret shared through a t degree polynomial y was secret

shared through a t degree polynomial and if the parties just locally multiply their respective shares

of x and y not only it leads to the blow up in the degree, but it also causes security breach because

the resultant x times y is no longer shared through a random 2t degree polynomial.

And the same issue is coming here so now what we have to do is, but this protocol is very nice

because it has this property that each party just talks with only one of the neighbors and remember

our whole motivation is to get a efficient 3PC protocol where we would like that each party talks

only once for every multiplication gate and that too only with one of the neighbors.

So, we would like to retain this blueprint, but to prevent the security breach what we have to do is

we have to ensure a mechanism where party P should randomize the piece Z i before sending it to

the neighbor.

(Refer Slide Time: 47:36)

Now how exactly that randomization will happen that will be the focus of our next lecture. So, the

3PC protocol based on replicated secret sharing that I discussed today in today’s lecture is based

on this paper published in 2016. Thank you.

