
Secure Computation: Part I

Prof. Ashish Choudhury

Department of Computer Science Engineering

Indian Institute of Technology-Bengaluru

Lecture-37

Oblivious Transfer (OT)

(Refer Slide Time: 00:32)

Hello everyone, welcome to this lecture. So, in this lecture we will now discuss a very important

cryptographic primitive which is called as oblivious transfer or in short OT. Why do we want to

discuss oblivious transfer? Because remember, we want to design the pre processing phase or

implement the pre processing phase for generating additively shared multiplication triples and that

is in the honest majority setting. And oblivious transfer is going to play a very crucial role there.

Not only that, oblivious transfer is used in varieties of other cryptographic problems and

applications - we will not be going through all the applications of oblivious transfer. Oblivious

transfer in itself is a very important cryptography primitive and it has been widely studied. So, in

this lecture, we will see the various variants and definition of oblivious transfer and what are the

necessary conditions that we require for the existence of oblivious transfer protocols?

(Refer Slide Time: 01:33)

So, we will start with the definition of 1 out of 2 oblivious transfer or OT. And oblivious transfer

was introduced or invented by Michael Rabin and his seminal work. So, I am going to discuss a

variant of oblivious transfer. So, the way I am going to discuss the oblivious transfer here is not

the way Michael Robin invented or proposed it. We will see the variant at or the original definition

that Robin gave and later we will see that actually both these variants are equivalent to each other.

The reason we are considering a variant of the oblivious transfer compared to the original form of

Robin’s OT is that we will use this variant of OT that we are going to see now while designing our

MPC protocol and the pre processing phase. So, in the problem statement, we have a sender 𝑆 and

a receiver 𝑅. Sender has a pair of private inputs a pair of messages 𝑚0 and 𝑚1, they could be as

small as 2 bits or they could be arbitrary long strings, but finitely long strings.

And receiver has a private input which is a selection bit, which is either 0 or 1. This oblivious

transfer is a protocol according to which the sender and a receiver will interact. And at the end of

the protocol, only receiver receives an output, sender does not have any output. What output does

the receiver receive? It receives the message which is dependent on it is selection bit. So, you can

imagine that it is selection bit 𝑏 datermines the message which it wants to receive from the sender.

Sender has 2 messages, a message with index 0, a message with index 1, receiver does not know

the values of those messages to begin with. But he has a choice bit, if his choice bit is 𝑏 = 0, then

at the end of the OT protocol it should receive the output 𝑚0. If it is choice bit is 1 then at the end

of the OT protocol, it should receive the message 𝑚1. Now you might be wondering what the big

deal in this is, sender could have directly given both the messages 𝑚0 and 𝑚1 to receiver?

Well, here are some security properties which we require from the oblivious transfer, depending

upon whether the sender is corrupt or the receiver is corrupt. So, we first consider the case where

if the receiver is corrupt. So, if the receiver is corrupt in the protocol then we require that it should

only learn the message which it is interested to receive. So, if it is interested to receive the message

𝑚0, it should receive only the message 𝑚0.

And during the interaction with the sender, it should not learn anything about the message 𝑚1.

Whereas if it is interested to learn the message 𝑚1, it should get message only the message 𝑚1 and

not the message 𝑚0. That is what we require during the oblivious transfer protocol, that is what

the sender’s security is. What does it mean that? It means the receiver does not learn anything

about the other message.

So, if the receiver is corrupt, then this will be the view of the adversary, it is view will be it is

selection bit, the output 𝑚𝑏, its local randomness and whatever messages it has received from the

sender. Not learning anything about that the other message is formalized by saying that there exists

a simulator which when given the receiver’s input, namely it is choice bit and a receiver’s output,

it could simulate a view whose probability distribution is computationally indistinguishable from

the view of the receiver which it would have obtained by interacting with the sender. Namely,

what we are saying is that whatever receiver could learn by interacting with the sender, it could

learn even without interacting with the sender. Then it is equivalent to saying that it does not learn

𝑚1−𝑏 – namely, the other message. That is the sender’s security.

(Refer Slide Time: 06:28)

Whereas if the sender is corrupt, then we require that during the interaction with the receiver, the

choice bit of the receiver should not be revealed to the sender. Sender will know that ok, one of

the 2 messages has been transferred obliviously to the receiver, which is why the term oblivious.

But it should not learn whether it was the message 𝑚0 or whether it the message 𝑚1 which got

delivered to the receiver, that is why the name oblivious transfer.

Otherwise the receiver could have just asked the sender, ok, I am interested in the message 𝑏 = 0,

please give it to me. But in that process, sender learns that choice bit, which we do not want that

to happen during the interaction. So, this is formalized again by saying the following, that whatever

is the view of a corrupt sender which it generates while interacting with the receiver, the same

view can be recreated or simulated by a simulator just based on the inputs of the sender.

And a simulated view will be should be computationally indistinguishable from the real view of

the corrupt sender. So, we will see later the design of the oblivious transfer protocols because as I

said oblivious transfer is a very, very fundamental primitive in cryptography. It has got varieties

of applications but from now onwards whenever I am going to assume that we have an oblivious

transfer protocol 1 out of 2 oblivious transfer protocol I will use this notation.

This notation will mean that I have an secure oblivious transfer protocol achieving both these 2

properties, where sender will feed it is inputs namely 𝑚0, 𝑚1. A receiver will feed it is input

namely it is selection bit and it will obtain the message that it is interested in. Why is it called 1

out of 2 OT? Because the receiver is interested to learn 1 out of 2 messages.

(Refer Slide Time: 08:53)

So, now as I said, that there are various other variants of oblivious transfer. So, let us first start

with Rabin’s original formulation of oblivious transfer, the way he defined the problem in his

original paper. So, in his paper sender has only 1 message as the input, say the message 𝑚 and

receiver can have 2 possible outcomes, it can either obtain the message 𝑚 as the output with

probability half or it will obtain a null output with probability half but sender will be completely

oblivious.

What exactly has happened? It will not know whether the message 𝑚 got transferred or delivered

or whether ⊥ got delivered to the receiver. And if the receiver receives the output ⊥ then it will

not be knowing what the sender’s input was. So, that was the original formulation of oblivious

transfer by Robin. Whereas the way we have defined oblivious transfer, we have assumed that

sender has 2 messages, receiver has a choice bit and depending upon the choice bit it receives the

corresponding message.

As I said the reason we are following this definition of oblivious transfer is because it is easy to

use this version of oblivious transfer later when we want to design the MPC protocols. But now if

you are wondering whether the Robin’s version is same as the new version or the alternate version

that we have defined here, the answer is yes. Because it can be shown that if you have a secure

protocol for implementing Robin’s set OT then you can use that secure protocol to get another OT

protocol satisfying the requirements that we have just presented.

And the other way around also holds if you have a protocol for this variant of oblivious transfer,

you can design a protocol satisfying Robin’s original formulation. Now, the notion of 1 out of 2

OT can be generalized to 1 out of 𝑁 OT, where now sender has 𝑁 number of messages. Instead of

2 messages it has now 𝑁 messages and receiver will have an index depending upon that index

which could be any index in the range 0 to 𝑁 − 1, it should get back the corresponding message.

But during the interaction that happens between the sender and the receiver, a corrupt sender

should not learn anything about the index of the receiver. Namely, sender should not learn what

message got transferred to the receiver and receiver should learn only the message which it is

interested in, it should not learn anything about other 𝑁 − 1 messages. So, it can be shown that if

you have a secure mechanism to implement 1 out of 2 OT, then you also have a secure mechanism

to implement 1 out of 𝑁 OT, we will soon see that.

And then we can further generalize the 1 out of 𝑁 OT problem to 𝑘 out of 𝑁 OT. Namely, in the

k out of 𝑁 OT sender has 𝑁 number of inputs and receiver has 𝑘 number of choice indices. And

depending upon which 𝑘 messages it is interested to receive, it receives those 𝑘 messages. Again,

a corrupt sender should not learn what the 𝑘 messages which got transferred are, a corrupt receiver

should learn only the 𝑘 messages it is interested in, it should not learn anything additional about

the remaining messages.

One question that might come to you is that why cannot receiver receive both the messages by

participating in the oblivious transfer twice? And in the first instance it participates in, its choice

bit will be equal to 0 and in the second instance it will be equal to 1. Well, that is quite possible

but the use case of the oblivious transfer later in the MPC protocol will be that we will be using

OT instances over inputs which are decided during the MPC protocol.

And in each instance a sender and receiver will be participating with random inputs. So, every

time the same sender and receiver gets involved in an OT interaction the inputs and the choice bits

will be different. And again it can be shown that if you have a secure instantiation of 1 out of 2 OT

then you can get a secure instantiation for 𝑘 out of 𝑁 OT as well.

(Refer Slide Time: 14:06)

So, now how do we construct OT protocols? As I said OT is a very, very fundamental primitive

cryptography. It is one of the widely studied topics and there are several ways to design OT

protocols based on various assumptions. Namely, assuming that we have difficult problems to

solve say the factoring problem, the decisional Diffie–Hellman problem, we can construct OT

protocols.

Assuming that we have Trapdoor one-way permutations say the RSA Trapdoor permutation, we

can build OT protocols. We can also build OT protocols assuming the communication channel

between the sender and a receiver is noisy and so on. So, now an important question that you might

ask is the following, why assumptions have to be made while designing or constructing OT

protocols, why cannot they be built unconditionally without making any assumptions whatsoever?

Can we build OT protocols assuming that the channel between the sender and the receiver is

noiseless and say the corrupt party is computationally unbounded? The answer is no. Because it

can be shown that if you have an OT protocol which gives you unconditional security against the

computationally unbounded sender or a computationally unbounded receiver, then using that OT

protocol you can construct a secure 2 party protocol for computing the AND of 2 bits and that

protocol will be secure even if 1 of the 2 parties is computationally unbounded. But we know that

this is not possible, we have already proved it.

So, we already proved that there exist no unconditionally secure two party AND protocol and that

automatically rules down the possibility of unconditionally secure OT protocol. And that shows

that to design OT protocols, you definitely need to make assumptions, either assumptions

regarding the physical channel which is there between the sender or the receiver or some

assumption regarding the computing speed of or the computing resources of adversary.

(Refer Slide Time: 16:48)

So, let us see the proof of this implication, how exactly we can convert a secure OT protocol into

a secure 2 party AND protocol? So, assume you are given an OT protocol; you are given a secure

instantiation of OT protocol and say it is unconditionally secure. Namely, even if the sender is

computationally unbounded, it does not learn the choice bit of the receiver or if the receiver is

computationally unbounded, it does not learn anything about the other message of the sender.

It only learns the message which it is interested in. So assume we are given one such protocol,

using that protocol we have to construct an AND protocol which allows the 2 parties Alice and

Bob with bits 𝑥1 and 𝑥2 to securely learn the AND of their respective bits. And when I say secure

AND protocol, that means we want to ensure that if say 𝑥2 is 0 - so we consider Bob is corrupt and

if 𝑥2 is 0 it anyhow knows that the function output will be 0.

But the interaction with Alice should not tell Bob whether 𝑥1 was 0 or 𝑥1 was 1, that is the security

guarantee we require from the AND protocol. And similarly if Alice is corrupt and if our input is

0, it anyhow knows that the function output is going to be 0 but the interaction with Bob should

not reveal whether the 𝑥2 was 0 or 𝑥2 was 1. So, assuming we have an unconditionally secure

protocol for oblivious transfer, we will see that how Alice and Bob can use the OT protocol to the

securely compute the AND of their respective bits?

And before going into that, let me write down the output of the OT functionality. So, the output of

the OT functionality or the OT box or the OT protocol is the message 𝑚𝑏. And that message 𝑚𝑏

can be expressed by this expression here - 𝑚𝑏 = (1 − 𝑏) ⋅ 𝑚0 ⊕ 𝑏 ⋅ 𝑚1, and you can verify it. If

indeed 𝑏 = 0, then 𝑚𝑏 should have been 𝑚0.

So, if I substitute 𝑏 = 0 in this expression, right, then this 𝑏 ⋅ 𝑚1becomes 0 and (1 − 𝑏) becomes

1, so 𝑚𝑏 becomes 𝑚0. And indeed if 𝑏 = 1, I require that the output 𝑚𝑏 should be equal to 𝑚1.

So, again let us substitute 𝑏 = 1 in the expression. If 𝑏 = 1, then (1 − 𝑏) becomes 0, so 0 ⋅ 𝑚0 is

0 and hence 1 ⋅ 𝑚1 will be 𝑚1. So, I can say that output generated by the OT is this.

So, now the question is that how Alice and Bob can invoke the OT protocol and securely compute

the AND of 𝑥1 and 𝑥2? So, here is how they can securely compute the AND. So, let us Alice act

as the sender, again Bob also could have acted as the sender, no issue, just for simplicity I am

assuming that Alice acts as the sender and Bob acts as the receiver in an OT instantiation. That

means they take this OT protocol, now let Alice use the messages 0 and 𝑥1 as her pair of input

messages for the OT.

So, she is acting as the sender for the OT, so she has to decide what the messages 𝑚0 and 𝑚1 are.

And since Bob is acting as a receiver, he has to decide what should be the choice bit. So, he is

using his choice bit as the bit 𝑥2. Now, as per the OT protocol, they will interact. And finally Bob

will obtain an output and now if you see the output expression of the OT.

You can see here, that the output that Bob receives is nothing but 𝑥1 ⋅ 𝑥2. Why so? Because since

𝑚0 is 0, so 𝑚𝑏 a bit which the message which Bob is going to receive is (1 − 𝑏) ⋅ 𝑚0 ⊕ 𝑏 ⋅ 𝑚1.

But m 0 is any how set to 0, so it will vanish. So, it is only 𝑏 ⋅ 𝑚1 but 𝑏 is 𝑥2 and 𝑚1 is 𝑥1, so that

is what Bob will receive. Once Bob learns the output 𝑥1 ⋅ 𝑥2, he can disclose it to Alice only.

So, that both of them learn 𝑥1 ⋅ 𝑥2. Now, the claim is that if your OT protocol, the so called OT

protocol that you assumed to exist is correct. In the sense it ensures that Bob receives the correct

message 𝑚𝑏 then when Bob and Alice participates in the AND protocol using the OT protocol as

a sub protocol, they will obtain the correct output. So, the correctness of the OT protocol gets

translated to the correctness of the AND protocol.

Now what about the privacy? Can I say the following? So, say let us consider the case when Bob

is corrupt and say 𝑥2 = 0 because a Bob is corrupt and if 𝑥2 = 1, then anyhow from the function

output it will learn 𝑥1, so that is not a privacy breach. But we have to see that if Bob is corrupt and

if 𝑥2 is 0, then whether it learns whether 𝑥1 is 0 or 𝑥1 is 1. So, if 𝑥2 is 0 if choice bit 𝑥2 = 0, then

Bob learns only the message 0.

It does not learn anything about 𝑥1 and that will preserve the privacy of Bob. On the other hand,

if Alice is corrupt and say 𝑥1 is 0, because if 𝑥1 would have been 1 and is Alice is corrupt, then

again from the function output she will anyhow find out what is Bob is input. We have to consider

the case when Alice is corrupt and 𝑥1 is 0, if Alice is corrupt and 𝑥1 is 0, she will not learn what

exactly the choice bit of Bob is, and the choice bit of Bob is nothing but 𝑥2.

So, that shows that if your OT protocol has the privacy guarantee that means if it ensures sender

security against a corrupt receiver. And if it ensures receiver security against the corrupt sender,

then that OT protocols privacy property gets translated to the privacy property of the AND

protocol. And that shows that if your OT protocol was unconditionally secure, then so is the AND

protocol.

But we know that there is no perfectly secure or unconditionally secure AND protocol. The OT

protocol is there, but it is security is going to be cryptographic not unconditional.

(Refer Slide Time: 24:45)

Now let us see how we construct 1 out of 𝑁 OT from 1 out of 2 OT. And again for demonstration

purpose, I will assume 𝑁 = 4 but the idea that I am going to discuss here will work for any 𝑁 of

the form2𝑘. So, that means now Alice has 4 private messages, I am indexing them with 00, 01, 10,

11. And Bob has an interest in one of those 4 messages, so it could be either the message with

index 00 or the message with 01 or the message with index 10 or the message with index 11.

So, he has now a pair of choice bits 𝑏1 and 𝑏2. Depending upon the value of 𝑏1 and 𝑏2, the output

of the OT protocol should be this. Now, the idea behind the protocol is the following. 𝑆, the sender,

who in this case is Alice, is going to pick 2 pairs of random keys. And basically the key pair 𝑘0, 𝑘1

is for the LSB index. And the key pair 𝑘0
′ , 𝑘1

′ is for the MSB index.

So, sender does not know whether the LSB index is 0 or 1, Alice does not know whether Bob’s 𝑏1

is 0 or 1 and Alice does not know whether Bob’s 𝑏2 is 0 or 1. So, with respect to each of the

indices, Alice is picking a pair of keys. Because each bit position or the choice bit of Bob is going

to take 2 possible values with respect to LSB as well as with respect to MSB Alice has picked a

pair of keys.

And now the idea is that Alice does not know which of the 4 messages Bob is interested in, she

cannot afford to ask Bob - “Bob please tell me what are your indices, I will transfer you those

messages” - because that will breach Bob’s privacy. So, somehow Alice has to communicate all

the 4 messages, in such a way that Bob should be able to retrieve only one of the 4 messages. That

automatically tells us that sender somehow has to encrypt all her 4 messages.

So, the way she is doing the encryption here is the following. She is going to encrypt the message

𝑚𝑖𝑗 to get a ciphertext 𝑐𝑖𝑗 and this happens using the keys 𝑘𝑗 and 𝑘′𝑖. So, what I am saying here is

that the message 𝑚00 will be translated to the ciphertext 𝑐00, 𝑚01 will be translated to 𝑐01, 𝑚10

will be translated to 𝑐10 and 𝑚11 will be translated to 𝑐11. Now, depending upon the indices here,

Alice will use the corresponding keys.

And now a receiver depending upon his choice bits, he should get back only the keys which he

needs to recover back or decrypt back one of the 4 ciphertexts. And how he can do that? For that

we can invoke 1 out of 2 OT instances, so this OT instance Bob is executing as a receiver and

Alice’s inputs for this OT instances are her pair of keys for the 𝑏2 bit position or the LSB bit

position.

So, for the LSB she has picked the keys 𝑘0 and 𝑘1, if 𝑏2 is 0 Bob will get 𝑘0, if 𝑏2 is 1 he will get

the key 𝑘1. Similarly the other OT instance is used for the 𝑏1 position. For the 𝑏1 position Alice

has picked a pair of keys 𝑘0
′ , 𝑘1

′ . If 𝑏1 is 0 Bob will obtain 𝑘′0, else he will obtain 𝑘1
′ .

Now, the question is how exactly this mapping should happen from the messages to the ciphertext?

It is not that we can use arbitrary form of encryption. So, let us first try OTP encryptions and see

whether that satisfies our requirement or not. So, you can see here that 𝑚00 is translated to 𝑐00 by

using the keys 𝑘0 and 𝑘0
′ as OTP pads. Message 𝑚01 gets translated to 𝑐01 using the keys 𝑘1 and

𝑘0
′ and similarly 𝑚10 got translated to 𝑐10, 𝑚11 got translated to 𝑐11.

Suppose this is the way the encryptions of the 4 messages have been computed apart from the OT

instances. Now, the question is does this ensure security? Of course, Bob will get the message that

it is interested to, because say for instance if 𝑏1 and 𝑏2 are 1 and 0 respectively, then through the

first OT instance, if it is participates with 𝑏2 = 0, then it obtains the key 𝑘0. And in the other OT

instance if it is participating with 1, then it gets 𝑘1
′ .

And hence it will have both these keys to decrypt 𝑐10 and get back 𝑚10. So, correctness is there

for Bob, but does Bob learn anything additional in the process? And the answer is yes. If Bob takes

the XOR of all the 4 ciphertexts here, then basically the effect of all the k’s cancel out and he learns

of and additional information namely the XOR of all the messages of all Alice messages, which is

not supposed to be learned by Bob.

Because if at all sender security is achieved in the protocol, then Bob should only learn the message

which it is interested in. But if this is the way the Alice messages are encrypted and Bob learns

additional information, namely it learns the XOR of all the messages of Alice and that is why this

is definitely not the way Alice should encrypt her messages.

(Refer Slide Time: 32:28)

So, let us see another method of encrypting and this is assuming we have a pseudorandom function.

Again what is the pseudorandom function? I refer you to the NPTEL earlier course on foundations

of cryptography. Basically it is a keyed function operated by a key and apart from the key we have

an input also being provided to the function. And this function imitates like a true random function

if the value of key is not known.

That means even if you know the input of the function, you cannot predict output of the function

if the key is not given to you. And for most practical purposes this pseudorandom function can be

instantiated using an AES. So, now what I am proposing here is the actual method of encryption

is that let Alice use this key pairs 𝑘0, 𝑘1, 𝑘0
′ , 𝑘1

′ as AES keys. And let the mapping from 𝑚𝑖𝑗 to 𝑐𝑖𝑗

be the same as we have discussed.

Except that instead of plane XORing the key is with the messages, we generate random pads and

with XOR those with the message which needs to be encrypted. And now you can see that Bob

cannot launch the same attack which we could launch in the previous case because now if we

performs the XOR of all the 4 ciphertext that he receives, then the effect of the pads does not

cancel out.

Because the pseudorandom function with different inputs will give you different pads and that is

why they will not cancel out. And hence Bob will learn only the message that it is interested in.

Say for instance, if 𝑏1, 𝑏2 was say 0,0, so of course Bob will have the key, through the OT instances

it will receive the keys 𝑘0
′ and 𝑘0. So, it will have sufficient information to decrypt the first

ciphertext, namely the ciphertext is 𝑐00.

Because it will have the keys 𝑘0
′ and 𝑘0 and a description of pseudorandom function or say AES

is publicly known. So it can regenerate this pad and XOR it with the ciphertext to 𝑐00 to get back

the message 𝑚00. But say let us try to analyze whether it can learn anything from the second

ciphertext.

In the second ciphertext, there is a pad generated by the key 𝑘1. But since the key 𝑘1 is not available

with Bob because through the OT instance, he has learned only 𝑘0, it does not learn 𝑘1. That is

why it does not have sufficient information to decrypt; the second ciphertext. In the same way if I

consider the third cipher text, right, for decrypting third ciphertext it requires this pad which is not

available with Bob. And for the fourth ciphertext, it requires both these pads which are not

available to him. And that ensures that Bob in this process does not learn anything about the other

messages.

(Refer Slide Time: 36:02)

Well, there are several other forms of encryption as well Bob, Alice could have done the following,

she could have done what we call us double encryption. Well, this PRF based construction is also

a form of double encryption, why double encryption? Because we are actually using 2 pads to

encrypt the message but it is not actually a form of double encryption. The actual form of double

encryption will be this last form, where the message 𝑚00 is encrypted twice once using the key

𝑘0. And then finally the result is used as a message to be encrypted again using another key 𝑘0
′ to

get the final ciphertext to 𝑐00.

So, this method is also a secure method, if your encryption scheme satisfies security property or if

your pseudorandom function is actually a secure pseudorandom function, then this second method

is also a secure method. But this first method of just blindly XORing the messages with the keys,

it is not a secure message because that reveals additional information to Bob. So, that shows that

if you are given a secure instantiation of 1 out of 2 OT, then you can get a secure instantiation of

1 out of 𝑁 OT as well.

(Refer Slide Time: 37:26)

So, there are plenty of nice resources available online to learn more about oblivious transfer at

Indian Institute of Science in this CRIS lab, cryptography information security lab. Some time

back in 2015, we conducted a very interesting study group just on the topic of oblivious transfer,

here is the link for the study group. So, there you can find several other resources and state of the

art research papers related to oblivious transfer, thank you.

