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Hello everyone, welcome to this lecture. So, we have seen the definition of oblivious transfer 

and our next goal will be to construct oblivious transfer protocols. So, with that goal in mind 

we will see in today's lecture about RSA assumption, the RSA problem and the hard-core bit 

of RSA function. So, most of the things that I am going to discuss in today's lecture are taken 

from my other NPTEL course on foundations of cryptography. 

 

So, if you want to know them, if you want to know more details about RSA assumption, RSA 

function, how hard it is etcetera, then you are referred to that material in the other course, I will 

be just briefly going through whatever we need for the construction of the oblivious transfer 

protocol. 
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So, we start with the set ℤ𝑁
∗  and its properties. So, what is the set ℤ𝑁

∗ ? So, first of all the set ℤ𝑁 

where 𝑁 is a modulus is the set  {0,1, … , 𝑁 − 1}, you can imagine that it is the set of all possible 

remainders which you can obtain by dividing any integer by a given modulus 𝑁. What is ℤ𝑁
∗ ? 

ℤ𝑁
∗  is a subset of ℤ𝑁 which has only those elements which are relatively prime or co prime to 

the modulus 𝑁 namely it is the collection of all the integers 𝑎, 𝑏 from the set ℤ𝑁 such that the 

GCD - the greatest common divisor - of (𝑎 ⋅ 𝑏)𝑚𝑜𝑑𝑁 is 1. So, for instance if I take 𝑁 = 10 

then ℤ10
∗  will have the elements 1, 3, 7 and 9 because if you take GCD of 1 and 10 then that is 

1, GCD of 3 and 10 that is 1 and so on. But 2 is not a member of ℤ10
∗  because the GCD of 2 

and 10 is not 1, it is 2. And it is easy to see that if the modulus 𝑁 is a prime number, then ℤ𝑁
∗   

will have all the elements from ℤ𝑁 except 0. 

 

So, we have several nice properties related to set ℤ𝑁
∗  I will quickly state those statements, I 

would not be going through the proof of these statements, again for the proof you are referred 

to my NPTEL course on foundations of cryptography. So, if we consider the set ℤ𝑁
∗  and 

operation multiplication modulo 𝑁, then it constitutes a group. In fact, we have seen the proof 

of this particular theorem at the beginning of this course itself where we discussed about groups 

and their properties and we have seen various candidate groups. 

 

So, this operation multiplication modulo 𝑁 (⋅𝑁) is as follows. So, if you have 2 numbers 𝑎 and 

𝑏 and you want to compute the result of 𝑎 ⋅𝑁 𝑏, then this is same as you multiplying 𝑎 and 𝑏 

and then taking mod 𝑁. Whatever is the remainder, that will be considered as the result of 

𝑎 ⋅𝑁 𝑏. And we do have efficient algorithms to compute what we call as the multiplicative 



inverse of any element from the set ℤ𝑁
∗  namely the extended Euclidean algorithm can be used 

to compute the multiplicative inverse of any element from the set ℤ𝑁
∗ . 

 

We also have some nice properties regarding the cardinality of the set ℤ𝑁
∗  namely how many 

integers are relatively co prime to the modulus 𝑁, the cardinality or the number of such 

elements is denoted by this 𝜙 function which is also called as Euler’s totient function. And the 

particular cases in which we are interested with respect to this Euler’s totient function are when 

the number or the modulus 𝑁 is a prime in which case the cardinality of 𝜙(𝑁) will be 𝑝 − 1. 

 

Whereas, if 𝑁 is the product of distinct prime numbers 𝑝 and 𝑞, then the value of 𝜙(𝑁) is the 

product (𝑝 − 1) ⋅ (𝑞 − 1). We also have this nice result from number theory where we say that 

you take any element 𝑎 from the set ℤ𝑁
∗  and if you compute 𝑎𝜙(𝑁) and then take mod 𝑁 that 

will give you the result 1. And because of this, we come to the following conclusion. 

 

If you are given any element 𝑎 from the set ℤ𝑁
∗  and you want to compute 𝑎𝑥𝑚𝑜𝑑 𝑁 then the 

exponent 𝑥 itself can be reduced modulo 𝜙(𝑁). That means whatever is the remainder that you 

have obtained by computing 𝑎𝑥𝑚𝑜𝑑 𝑁 , namely by dividing 𝑎𝑥  by the modulus 𝑁, the same 

remainder you will obtain if you first reduced exponent to 𝑥 𝑚𝑜𝑑 𝜙(𝑁) and then compute 

𝑎𝑥 𝑚𝑜𝑑 𝜙(𝑁)𝑚𝑜𝑑 𝑁. So, if 𝑦 = 𝑥 𝑚𝑜𝑑 𝜙(𝑁), then what I am saying here is that 

𝑎𝑥 𝑚𝑜𝑑 𝜙(𝑁)𝑚𝑜𝑑 𝑁 will give you the same result as 𝑎𝑦𝑚𝑜𝑑 𝑁. And this is a very nice result 

because if your exponent is very large, then instead of computing 𝑎 to the power a large 

exponent you can first reduced the exponent and made it a small value, and then computed 

𝑚𝑜𝑑 𝑁, you will get the same result. 
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Now, based on all these results from number theory, we next discuss the RSA permutation or 

the RSA bijection which is a function from the set ℤ𝑁
∗  to ℤ𝑁

∗  and how this function is computed. 

It is computed as follows. So, here we will be given an exponent 𝑒 which is greater than 2 and 

this 𝑒 is co prime to 𝜙(𝑁). Since it is co prime to 𝜙(𝑁), again using basic results from number 

theory, we can conclude that we can find out inverse of 𝑒 exists, inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁) exists, 

let 𝑑 be that inverse. 

 

So, if 𝑑 = 𝑒−1𝑚𝑜𝑑 𝜙(𝑁) then we have the property that (𝑒𝑑) 𝑚𝑜𝑑 𝜙(𝑁) = 1 and since 𝑒 is 

also the inverse of 𝑑 𝑚𝑜𝑑 𝜙(𝑁) that means I can say that even (𝑑𝑒) 𝑚𝑜𝑑 𝜙(𝑁) = 1. Now, the 

way we define this RSA permutation is as follows. So, we have a function from ℤ𝑁
∗  to ℤ𝑁

∗  

operated with respect to this exponent 𝑒. 

 

And if you want to compute the value of this function on the input text, you basically 

compute𝑓𝑒(𝑥) =   𝑥𝑒𝑚𝑜𝑑 𝑁, namely the 𝑒th power of𝑥 𝑚𝑜𝑑 𝑁. Whereas if you want to go 

back from an element 𝑦 then you operate with 𝑑 and to compute the inverse of 𝑦 you basically 

compute𝑓𝑑(𝑦) =  𝑦𝑑𝑚𝑜𝑑 𝑁. And again, we can prove that the function 𝑓𝑑 is the inverse of the 

function 𝑓𝑒 − how we can prove that? 

 

So, we consider any arbitrary element 𝑥. And let 𝑦 be the image of that 𝑥 as per the 𝑓𝑒 function 

that means 𝑦 = 𝑥𝑒𝑚𝑜𝑑𝑁. And now, we want to prove that we can reverse the effect of the 

function 𝑓𝑒 by applying the function 𝑓𝑑 on the result of the function 𝑓𝑒. So, what is the result of 



the function 𝑓𝑒? It is 𝑦. So, let us see we can reverse the effect by computing the function 𝑓𝑒 on 

the input 𝑦. 

 

So, if we want to compute the result, it will be 𝑦𝑑𝑚𝑜𝑑 𝑁, but 𝑦 itself is 𝑥𝑒𝑚𝑜𝑑 𝑁. So, let me 

substitute the value of 𝑦 here. If I substitute, I get this expression and then I can take this 

exponent inside; overall I get𝑥𝑒𝑑𝑚𝑜𝑑𝑁. And now you remember we have this result at if you 

want to compute 𝑥 to the power any exponent modulo 𝑁 then you can reduce the exponent 

modulo 𝜙(𝑁). 

 

You will get the same result. So, this will give you the same result as 𝑥𝑒𝑑 𝑚𝑜𝑑 𝜙(𝑁) 𝑚𝑜𝑑 𝑁. But 

what we can say about this quantity (𝑒𝑑) 𝑚𝑜𝑑 𝜙(𝑁) is 1 because the 𝑑 and 𝑒 are inverse of 

each other. So, that means the reduced exponent is now just 1. 

 

And 𝑥1𝑚𝑜𝑑 𝑁 = 𝑥, why so? Because 𝑥 is an element of ℤ𝑁
∗  and since 𝑥 is an element of ℤ𝑁

∗ , it 

is strictly less than 𝑁 and hence the effect of mod would not take place at all when you are 

computing 𝑥 𝑚𝑜𝑑 𝑁 because you are not doing the wrapper and hence the result will be 𝑥 only. 

So, that shows that these 2 functions are inverse of each other. If you go from 𝑥 to 𝑦 and want 

to come back to x, you apply the function 𝑓𝑑, whereas, if suppose you have gone from 𝑦 to 𝑥 

and then again you want to come back to 𝑦 you apply the function 𝑓𝑒. 
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Moreover, we can also prove that this function 𝑓𝑒 is a bijection and for showing the bijection 

let us consider an arbitrary pair of inputs 𝑥1 and 𝑥2 from the set ℤ𝑁
∗  and suppose the mapping 



of 𝑥1 as per the function 𝑓𝑒 is 𝑦1, the mapping of 𝑥2 as per the function 𝑓𝑒 is 𝑦2 such that 𝑦1 

and 𝑦2 are same. Then we want to conclude that 𝑥1 and 𝑥2 are also same. How do we conclude 

that? 

 

So, since the mapping of 𝑥1 is 𝑦1, I can write 𝑦1 as 𝑥1
𝑒𝑚𝑜𝑑 𝑁 and the mapping of 𝑥2 is 𝑦2, I 

can write 𝑦2 = 𝑥2
𝑒 𝑚𝑜𝑑 𝑁. But we are assuming that 𝑦1 and 𝑦2 are same. So, hence this equality 

holds. If this equality holds then I can also raise both the sides to the exponent to 𝑑, the same 

exponent because if you have LHS = RHS and you raise both the sides to the exponent 𝑑 you 

should get back the same answer. 

 

And now what I can say about 𝑥1
𝑒𝑑𝑚𝑜𝑑𝑁? Well  𝑥1

𝑒𝑑𝑚𝑜𝑑𝑁 will be 𝑥1, in the exponent I can 

reduce 𝑒𝑑 as (𝑒𝑑)𝑚𝑜𝑑 𝜙(𝑁) and (𝑒𝑑)𝑚𝑜𝑑 𝜙(𝑁) will be 1. So, it will give me 𝑥1 only, 

because 𝑥1 is an element of ℤ𝑁
∗ . So, it is strictly lesser than 𝑁. In the same way 𝑥2

𝑒𝑑𝑚𝑜𝑑 𝑁 will 

be same as 𝑥2. So, I come to the conclusion that 𝑥1 = 𝑥2 and since we have shown that the 

function 𝑓𝑒 is invertible, that establishes the fact that this function 𝑓𝑒 is a bijection. 
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So, now based on all this, let us see the RSA problem and associated assumption which we call 

RSA assumption. So, this problem is defined with respect to an algorithm which we call as 

GenRSA which is publicly known. 𝜆 here is your security parameters. So, again all these terms 

might look like a jargon but you refer to the earlier course on foundations of cryptography, 

there we have defined what is security parameter, GenRSA function and so on. 

 



So, this algorithm GenRSA outputs some parameters, how the parameters are generated here? 

So, we first to generate the modulus. And to generate the modulus, we pick 2 random prime 

numbers, random 𝜆 bit prime numbers, distinct prime numbers 𝑝 and 𝑞 and 𝑁 is set to be 𝑝 ⋅ 𝑞. 

Now, since 𝑁 is the product of distinct primes 𝑝 and 𝑁 we know that the value of 𝜙(𝑁) is (𝑝 −

1) ⋅ (𝑞 − 1). 

 

Then as part of this GenRSA, we select a value 𝑒 which is greater than 2 such that 𝑒 is relatively 

prime to 𝜙(𝑁). If it is relatively prime to 𝜙(𝑁) and we know the value of 𝜙(𝑁) then by running 

the extended Euclidean algorithm, we can compute its multiplicative inverse, call it 𝑑, and then 

the output of this GenRSA algorithm is this 5 tuple namely, the modulus 𝑁, its prime factors, 

the exponent 𝑒 and its multiplicative inverse exponent 𝑑. 

 

And what is an RSA problem instance? The RSA problem instances as follows, you will be 

given only the value of 𝑁 and only the exponent 𝑒. The values of the prime factors of 𝑁 and 

exponent 𝑑, they would not be given to you and you will be given a challenge instance namely 

a random element 𝑦 from the set ℤ𝑁
∗ . And your goal will be to compute the 𝑒th root of this 

element 𝑦, namely 𝑦
1

𝑒𝑚𝑜𝑑 𝑁. 

 

Now 𝑦
1

𝑒
 𝑚𝑜𝑑 𝑁 is basically 𝑦𝑑𝑚𝑜𝑑 𝑁 because 

1

𝑒
= 𝑑, because 𝑑 and 𝑒 are inverse of each 

other. So, the challenge is you know 𝑁, you know 𝑦, you are not given 𝑑, you are not given 

the prime factors 𝑝 and 𝑞 and your goal is to come up with the result of 𝑦𝑑𝑚𝑜𝑑 𝑁. If I give 

you the prime factors, then this problem is very easy, if I give you the prime factors 𝑝 and 𝑞, 

then you yourself can compute the value of 𝜙(𝑁). 

 

And if you know 𝜙(𝑁) and you know 𝑒 inverse and can compute 𝑑. And then you can compute 

𝑦𝑑𝑚𝑜𝑑 𝑁. The challenge is that, in the absence of the prime factors of 𝑁 or without a 

knowledge of the exponent 𝑡 or the knowledge of 𝜙(𝑁), you are supposed to find out 

𝑦𝑑𝑚𝑜𝑑 𝑁. So, this difficulty is formalized by this experiment. Again, this might look like a 

vague experiment for the people who are taking this course, but if you have gone through 

foundations of crypto course and we know how to model various difficult problems in terms 

of security game. 

 



So, in the security game, we have this probabilistic polynomial time adversary and we have a 

verifier, the verifier presents an instance of the problem namely it runs GenRSA algorithm and 

generates all the parameters, it picks a random element 𝑦 from the set ℤ𝑁
∗  and it creates a 

challenge instance for the adversary. The challenge instances the value of the public modulus 

the exponent and the random element 𝑦. 

 

And the challenge for this adversary is to come up with the value of 𝑦𝑑𝑚𝑜𝑑 𝑁 in polynomial 

amount of time. So, he knows that 𝑦𝑑𝑚𝑜𝑑 𝑁 has to be an element of ℤ𝑁
∗ . So, his response 

should be some element of ℤ𝑁
∗ . How he has computed that response, we do not know. Now, 

we will say that he has solved the RSA problem or he has won the experiment which is denoted 

by saying that the output of this experiment is 1 if and only if he has indeed computed 

𝑦𝑑𝑚𝑜𝑑 𝑁 correctly. 

 

That means the 𝑥 that he is submitting as a response for his challenge has the property that 

𝑥𝑒𝑚𝑜𝑑 𝑁 = 𝑦. Otherwise, we will say that he has lost the game or equivalently the output of 

the experiment is 0. And we say that RSA assumption holds with respect to the GenRSA 

algorithm. If for any adversary any algorithm who is given an instance or random instance of 

RSA problem, the probability that he can solve the problem instance or he can come up with 

the correct 𝑥 without a knowledge of the prime factors and 𝑑 and 𝜙(𝑁) is upper bounded by 

some negligible function in the security parameter. 
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Now, based on the RSA assumption, let us next define what we call as RSA hard-core bit or 

RSA hard-core function, RSA hardcore predicate. And the intuition here is the following. The 



claim is that if I gave you the output of the RSA function by RSA function, I mean the output 

of the 𝑓𝑒 function on some random input - that means I pick a value 𝑥 randomly, but I do not 

tell you the value of 𝑥, but I give you the value 𝑦. 

 

You know the value of 𝑁, you know the value of 𝑒, everything you know, you also know the 

description of 𝑓𝑒 function that also you know, but you do not know the value of prime factors 

of 𝑁, 𝜙(𝑁), 𝑑 and so on. Now, the intuition behind the RSA hard-core bit is the following. We 

can prove that if I give you the output of the RSA function on a random input 𝑥 then, in 

polynomial amount of time, it is difficult to compute the LSB of 𝑥. 

 

Of course, you will know that LSB of 𝑥 will be either 0 or 1. So, with probability half, you can 

always guess that the LSB of 𝑥 is 0 or 1, you toss a coin, fair coin and whatever the coin toss 

gives you as output, you label it as the LSB of 𝑥 and with probability half, you might be correct 

as well. What the RSA hard-core predicate says is that you cannot do anything better than that. 

 

There is no polynomial time algorithm using which you can analyze the output 𝑦 and come up 

with the exact LSB of 𝑥 with probability better than half. So, again, we can model this intuition 

through an experiment which I call as RSA hard-core experiment, which is played between 

verifier and a probabilistic polynomial time adversary, whose goal will be to compute the RSA 

hard-core bit. 

 

The verifier will generate the RSA parameters by running the GenRSA function. So, he will 

generate faster prime factors compute modulus then he picks a public exponent and once he 

knows the value of 𝜙(𝑁) and 𝑒, he can compute 𝑑 and now he prepares the challenge instance. 

So, he picks a random element 𝑥 from set ℤ𝑁
∗  and 𝑦 is the result of 𝑓𝑒(𝑥). So actually, it should 

be𝑓𝑒(𝑥), then this is 𝑥𝑒𝑚𝑜𝑑 𝑁. 

 

The verifier can compute this because he has 𝑥, he has 𝑒, he has 𝑁. And now he throws the 

challenge instance to the adversary. So, he gives the adversary or the algorithm who wants to 

compute the hard-core bit, the modulus, the public exponent and the output 𝑦. This adversary, 

he knows that 𝑓𝑒 is a function from ℤ𝑁
∗  to ℤ𝑁

∗ , he knows that detail. And he also knows how 𝑥 

would have been converted into 𝑦 but he does not know the value of 𝑥. 

 



𝑥 is not given to him. Now his goal is to come up with the LSB of 𝑥 in polynomial amount of 

time, we do not know what strategy he is going to use. So, he submits a response, it is going to 

be a bit 𝑏 and we will say that he has won the experiment or equivalently the output of the 

experiment is 1 which also means that he is able to solve or compute the RSA hard-core bit. If 

indeed the LSB of this random 𝑥 which is not known to the adversary turns out to be 𝑏. 

 

And we will say that computing the LSB of 𝑥 indeed constitutes a hard-core predicate a for 

every polynomial time adversary participating in the above experiment there is a negligible 

function such that the probability that adversary can win the experiment are correctly computes 

the LSB of 𝑥 is upper bounded by half plus negligible function. That means he should not be 

able to do anything significantly better than probability half. And it has been proved that indeed 

that this computing the LSB of 𝑥 just based on the output of that random 𝑥 as per the RSA 

function indeed is difficult to compute in polynomial amount of time. 
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That beautiful result has been published in this paper which shows that computing the LSB of 

𝑥 is as difficult as computing the entire 𝑥 based on the result of 𝑥𝑒𝑚𝑜𝑑 𝑁. So, I end today's 

lecture with this. So, we have discussed in today's lecture, the RSA assumption, the RSA 

permutation and RSA hard-core bit. Based on all those things in the next lecture, we will see 

how we can construct a 1 out of 2 OT protocol, a very simple 1 out of 2 OT protocol designed 

for the case when the sender’s inputs are bits. Thank you. 

 


