
Secure Computation: Part I

Prof. Ashish Choudhury

Department of Computer Science Engineering

Indian Institute of Technology-Bengaluru

Lecture-39

Bit OT Based on RSA Assumption and Hard-Core Predicate

Hello everyone, welcome to this lecture. So, in this lecture we will see the construction of bit OT

based on RSA assumption.

(Refer Slide Time: 00:37)

And this is basically the OT construction given in the GMW paper itself. And then we will see that

this specific instantiation of OT based on the RSA assumption and RSA hardcore predicate, how

it can be generalized to an OT construction based on what we call as one way trapdoor

permutations.

(Refer Slide Time: 01:04)

So, this is quickly the recap of RSA hardcore bit, the intuition here is that if there is an 𝑥 which

has been randomly chosen. And if someone gives you the value of 𝑥𝑒𝑚𝑜𝑑 𝑁 but does not tell you

𝑥, where 𝑁 is the product of 2 random prime numbers 𝑝 and 𝑞, then computing the LSB of 𝑥 is

difficult, you cannot do anything better than probability half plus negligible.

That means in no polynomial time algorithm can do better than just guessing the LSB of 𝑥. That

means computing the LSB of 𝑥 is indeed a difficult problem. So, that is the RSA hardcore bit or

RSA hardcore function.

(Refer Slide Time: 01:49)

 Based on that let us see the construction of a very simple 1 out of 2 bit OT because here, sender

has a pair of bits, 𝑚0, 𝑚1, which is the private input of the sender. And the receiver Bob has a

choice bit 𝑏 which is Bob's private input. We want to design a protocol according to which Alice

and Bob should interact and in which finally Bob should receive only the message he is interested

in. So, if 𝑏 = 0, he should only receive 𝑚0, if 𝑏 = 1 he should only learn 𝑚1.

But in the process, Bob should not learn anything about the other message, namely the message

with index 1 − 𝑏. And other way around we want the following, that if Alice is bad and when she's

interacting with Bob in the protocol, she should not learn which of the 2 messages 𝑚0 or 𝑚1 got

transferred to Bob. That means she should not run what exactly was Bob's choice bit 𝑏.

And the general idea of the protocol will be the following. Alice, who is the sender here she will

be using LSB’s of some random messages to mask her inputs 𝑚0 and 𝑚1. So, for 𝑚0 she will be

picking LSB of some random message. And for masking 𝑚1 she will be picking LSB of another

random message. And communicate the masked version of 𝑚0 and 𝑚1 to Bob.

And somehow Bob will have a mechanism to unmask only the message with index 𝑏, he will not

be given sufficient resources or sufficient information to unmask the other message. That is the

intuition behind this protocol. So, now let us see how exactly we instantiate this intuition? We do

not know why this happened, so this is Bob here, we should have a picture of Bob here, I do not

know why this has happened here, some rendering issue here.

So, Alice and Bob start the protocol as follows. So, Alice will have the pair of inputs 𝑚0 and 𝑚1,

that is our secret input. And Bob starts the protocol with his choice bit, which is a secret input.

Now what Alice does is the following, she runs the RSA parameter generation algorithm. As part

of that she will be picking random prime numbers 𝑝 and 𝑞, which are distinct of 𝜆 bit size each,

and compute the modulus by taking their product.

She will then pick a random 𝑒 which is co-prime to 𝜙(𝑁) and with respect to that, run the extended

Euclidean algorithm and compute 𝑑 and now she makes an 𝑁 and 𝑒 public. So, you can imagine

that every time Alice, you can imagine that for all the OT instances for which Alice and Bob are

going to interact, Alice can run this GenRSA function, generate the parameter and make 𝑁 and 𝑒

public once for all.

And after that the same setup can be used for polynomially many number of OT instances. Now

Bob has this secret bit 𝑏, so, what it does is the following. It picks 2 random messages from the

set ℤ𝑁
∗ - 𝑠 and 𝑇 - he knows both those messages. And now he computes the output of the RSA

function on the input 𝑠. The output of the RSA function of 𝑠 will be 𝑠𝑒𝑚𝑜𝑑 𝑁.

And this he can compute, why? Because Bob has the knowledge of 𝑒, Bob has the knowledge of

𝑁, so he can compute 𝑠𝑒𝑚𝑜𝑑 𝑁. And as a result, he will obtain an element of ℤ𝑁
∗ again because

remember the RSA function is a permutation or a bijection from ℤ𝑁
∗ to ℤ𝑁

∗ . So, he will obtain an

element, I denote it by 𝑆 which is an element of ℤ𝑁
∗ .

So, now he has 2 elements, one element is 𝑇 another element 𝑆. Now, what he does is the following.

He has to somehow send the elements 𝑇 and 𝑆, but he is going to send in a shuffled order depending

upon what exactly is his choice bit. If his choice bit is 𝑏 = 0 then he will send the elements 𝑆 and

𝑇 in the following order, he will send 𝑆 followed by 𝑇. So, I am denoting them as 𝑐0 and 𝑐1,

whereas if his choice bit is 1, then he sends 𝑇 followed by 𝑆.

Now, Alice is completely unaware about the ordering, she knows that Bob is going to send her 2

random elements from ℤ𝑁
∗ . By the way, this element 𝑆 is also a random element from ℤ𝑁

∗ because

the element 𝑠 was a random element from ℤ𝑁
∗ . And mapping 𝑥𝑒𝑚𝑜𝑑 𝑁 is a bijection. So, Alice

knows that Bob is going to send her 2 random elements from the set ℤ𝑁
∗ .

But whether it is element 𝑆 followed by element 𝑇 or whether it is the element 𝑇 followed by

element 𝑆, she does not know, because both of them are random group elements. And the order in

which Bob has sent the elements 𝑆 and 𝑇 depends upon that choice bit of Bob. So, basically

depending upon what 𝑏 is we can say that Bob knows that the element 𝑐𝑏 = 𝑆. Now, the thing to

note here is that Bob knows the LSB of the element 𝑠 because he himself has picked it.

So, this is known to Bob that is a crucial piece of information you should remember. That means

Bob knows that, so we will come back to this fact that how exactly will the knowledge of this LSB

of the element 𝑠 play a crucial role? Now, what should Alice do? Remember, our intuition was she

has to use the LSB’s of some random messages to mask her inputs 𝑚0 and 𝑚1. So, that later it

should be possible for Bob only to unmask one of the messages but not possible to unmask the

other message.

So, here is how Alice is going to mask her input, so she is computing the masks as follows.

Irrespective of the order in which she receives the 2 elements, it could be 𝑆 followed by 𝑇 or it

could be 𝑇 followed by 𝑆, she calls the first element as 𝑐0 and the second element as 𝑐1. She

computes 𝑐0
𝑑 that will give her an element of ℤ𝑁

∗ and she can do that, because she has the exponent

𝑑 with her.

So, she can compute 𝑐0
𝑑𝑚𝑜𝑑 𝑁 and take the LSB of the resultant element - that will be 𝑟0. And she

takes the element 𝑐1; compute 𝑐1
𝑑𝑚𝑜𝑑 𝑁 and takes the LSB of that element call it as 𝑟1. Now, what

has happened here? The thing is one of these 2 elements 𝑐0 and 𝑐1 is definitely 𝑆. And when she

computes 𝑆𝑑𝑚𝑜𝑑 𝑁, that will give Alice the element 𝑠.

And LSB of 𝑠 will be known both to Alice and Bob. And it is LSB of 𝑠 which will be serving as

the mask for the message 𝑚𝑏, which Bob is interested to finally receive, that is the intuition here.

So, what Alice is going to do is once she computes the mask 𝑟0 and 𝑟1, she sends the masked

version of 𝑚0 and 𝑚1. So, 𝑚0 is masked with 𝑟0, 𝑚1 is masked with 𝑟1. Now, Bob is interested to

receive the message 𝑚𝑏 − that is what is the goal of Bob.

So, how he is going to receive 𝑚𝑏? He will just take the message 𝑑𝑏, which Alice has sent to Bob.

And XOR it back from the LSB of element is 𝑠 and that will help him to cancel the effect of 𝑟𝑏.

Because 𝑚𝑏 was XORed with LSB of 𝑠 and to get 𝑟𝑏, Bob just have to take the LSB of the element

is 𝑠.

(Refer Slide Time: 11:32)

So, that is a very simple protocol, now let us do the analysis, why this protocol is going to maintain

Alice privacy, and Bob's privacy and so on. So, let us first consider receiver’s security. Namely,

we consider the case when Alice is corrupt and try to ask whether she learns anything about 𝑏 and

the answer is no. In fact even if Alice is computationally unbounded, she cannot figure out what

is 𝑏 except with probability half.

She can always guess what is the value of 𝑏, we can never prevent that from happening. But even

if she is computationally unbounded, she cannot do anything better than that, why? Because the

elements 𝑆 and 𝑇 are picked completely independent of the element is 𝑏, it does not matter whether

𝑏 = 0 or whether 𝑏 = 1, Bob is just picking 2 random elements from the group and sending it,

that is all.

Alice does not know the value of 𝑆, the value of 𝑇, so she is just seeing 2 random group elements

and those 2 random group elements could be any 2 group elements independent of what exactly is

the value of 𝑏 is and that ensures Bob security or receiver’s security. So, this OT protocol in fact

gives us perfect security for the case when the sender is corrupt. Now, let us try to understand the

case when now Bob could be correct.

Because during the OT protocol, it could be either Alice or Bob who could get corrupt. So, now if

Bob is corrupt, definitely he will learn 𝑚𝑏 because that is what he is interested in. But now we

have to argue whether he learns anything about the message 𝑚1−𝑏. And to find out other message

namely the message with index 1 − 𝑏, he has to find out the mask 𝑟1−𝑏. Because if he does not

know the mask 𝑟1−𝑏, how can he find out?

Because he is receiving 𝑐0 and 𝑐1 both of them, say for instance 𝑏 was 0. If 𝑏 = 0, he can always

compute this thing because 𝑟0 is nothing but LSB of the element 𝑠 which Bob himself has picked,

so he can compute this part. But even though he is getting the value of 𝑐1, he will not be knowing

what is the value of 𝑟1. Why he will not be knowing the value of 𝑟1?

Because computing 𝑟1 is equivalent to solving an instance of RSA hardcore function, why so?

Because this element 𝑇, you can imagine that if I compute 𝑇𝑑𝑚𝑜𝑑 𝑁 suppose that gives us element

is 𝑡. Alice can compute 𝑇𝑑𝑚𝑜𝑑 𝑁 because she has the decryption exponent 𝑑 or she can invert the

RSA function because she has the knowledge of 𝑑.

And hence she can compute the element 𝑡 and hence she can compute the LSB of 𝑡, she can

compute. But can Bob compute LSB of element 𝑡? No, remember the mask 𝑟0 and 𝑟1 they are the

LSBs of element 𝑠 and 𝑡 depending upon in what order the group elements have been

communicated. So, 𝑟0 and 𝑟1 they are the LSBs of elements 𝑠 and 𝑡.

Bob can compute one of those LSBs because he also has the element 𝑠, but he does not have the

element 𝑡. Because he cannot invert the RSA function or he cannot solve the in instance of RSA

hardcore function. So, basically Bob is facing here a challenge is to get the LSB of the element is

𝑡 which is equivalent to solving an instance of RSA hardcore function and assuming that the RSA

hardcore function is a difficult problem.

The LSB of the element is 𝑡 which is nothing but the mask 𝑟1−𝑏, is like a random bit for the receiver

Bob here. And if this mask 𝑟1−𝑏 is almost like a random bit, then so is this other masked message,

namely 𝑑1−𝑏. So, that means even though he is receiving the masking of the message 𝑚1−𝑏, the

mask itself is computationally indistinguishable for this Bob because he cannot solve an instance

of RSA hardcore function.

And hence he does not learn anything about the other message 𝑚1−𝑏. Now, an interesting thing

here to notice the following - our protocol will fail to achieve sender's security, if the receiver

behaves maliciously. So, our protocol will work under the assumption that Bob is indeed following

the protocol instructions. That means even if it is under the control of the adversary, it behaves in

a passive fashion or an eavesdropping fashion.

That means it does not deviate from the protocol instruction. But if Bob behaves maliciously, that

means does not follow the protocol instructions then he can learn both the messages 𝑚0 and 𝑚1,

how? So, he is supposed to pick an element 𝑠 and convert it into 𝑆 but for the other message or the

other group element, he is not supposed to learn the corresponding RSA inverse, instead what he

can do is the following.

He can start with 2 random elements 𝑠 and 𝑡, 𝑠 is converted to 𝑆, a 𝑡 is converted to 𝑇, how? By

computing 𝑠𝑒𝑚𝑜𝑑 𝑁. And this 𝑡 can be converted into 𝑇 by computing 𝑡𝑒𝑚𝑜𝑑 𝑁. And now he

will be knowing both the LSB of 𝑠 as well as this LSB of 𝑡 because he himself has picked it.

Remember, this is a deviation from the protocol.

In the protocol he is not supposed to pick first elements the 𝑠 and 𝑡 and convert them into 𝑆 and 𝑇,

he is only supposed to pick one of the elements and compute output of the RSA function. For the

other element, the difficulty for him should be to invert it but he is doing it other way around.

Other way around in the sense he is basically picking actually 2 elements and computing root of

the RSA function.

And then forwarding 𝑆 and 𝑇, say as per the protocol. Now Alice will be using LSB of 𝑠 for

masking one of the message and LSB of 𝑡 for masking another message. And both those things

are known to a malicious Bob, now and he can unmask both 𝑑0 as well as 𝑑1 and learns both 𝑚0

and 𝑚1. It is only when Bob picks one of the messages and computes the output of RSA function.

But for the other element he does not compute the inverse or not able to compute the inverse, the

security of Alice is preserved in this protocol. So, that is why this protocol cannot tolerate a

potential malicious behaviour from a Bob. Later on when I will offer the second part of this course,

we will see that how we can design OT protocols which can take care even against the potential

malicious behaviour from Bob.

But this protocol will achieve security as long as Bob is honestly following the protocol

instructions. Namely, for one of the elements he knows LSB but for the other element, he does not

know the LSB. Remember, the LSB of 𝑡 is not used for masking the message; 𝑇 is inverted to get

the element 𝑡 which only Alice can do. But malicious Bob could do the following; he can always

first take the small element 𝑡 and convert it into 𝑇 and then forward 𝑇 and 𝑆 in which case both

the LSBs will be known to Bob.

(Refer Slide Time: 20:46)

So, now let us try to generalize this protocol based on what we call as one-way trapdoor

permutation. So, for that let me quickly go through what is one-way trapdoor permutation? So, it

is a one-way permutation from a set 𝒳 to 𝒳, namely it is a bijection. And it is easy to compute for

any input from the domain, that you give me any element 𝑎 from the domain, I can always compute

𝑓(𝑎) in polynomial amount of time.

But if you give me an element 𝑏 from the core domain and ask me to invert it in polynomial amount

of time, then it is difficult, except with a negligible probability I cannot do that. However, if I

consider one-way trapdoor permutation, then it is possible to invert the function provided you have

some special information available. And that special information is called as the trapdoor

information.

So, that means a regular one-way permutation is we cannot invert it on random input from the co-

domain. But if I am talking about one-way trapdoor permutation, then there is always some special

trapdoor information associated with that permutation which can allow me to even invert the

function on random inputs from the co-domain. So, let us formally define this one-way trapdoor

permutation.

So, a one-way trapdoor permutation scheme 𝒯 is a triplet of algorithms. So, there will be a

parameter generation algorithm which will generate a public parameter 𝑝𝑘 and a secret parameter

𝑠𝑘 in polynomial amount of time. There will be 2 functions, a function 𝑓𝑝𝑘 in the forward direction

and an inverse function 𝐼𝑛𝑣𝑠𝑘 in the reverse direction. The forward direction function is operated

by the public parameter and it is a deterministic function where, if you are given the public

parameter and the input 𝑥, you can compute the output 𝑦 in polynomial amount of time. The

inverse function is operated by the secret parameter 𝑠𝑘, where if you are given the description of

the inverse function and the secret parameter then again in polynomial amount of time, you can

invert or compute output of inverse function for any input 𝑦. And these 2 functions 𝑓𝑝𝑘 and 𝐼𝑛𝑣𝑠𝑘

are inverse of each other.

In the sense that we have this correctness property which says that for every pair of parameters

𝑝𝑘, 𝑠𝑘 generated by the parameter generation algorithm. If you compute the output of the 𝑓𝑝𝑘

function on the input 𝑥 and then later compute the inverse of that, you should get the same output.

And we have this one-wayness property, which says that if you do not know the value of 𝑠𝑘, then

you cannot invert the function.

That means your function 𝑓𝑝𝑘 should behave like a one-way function if you are given only the

public parameter but not the secret parameter. That means the output cannot be computed even if

you know the description of the inverse function. That means until and unless you are not given

the secret parameter, you cannot compute the output of that inverse function on any input of your

choice that is the one-wayness property.

(Refer Slide Time: 24:39)

Now we have a very nice result which says that if you are given a one-way function, one-way

permutation then you can always associate a hardcore function with that one-way function or one-

way permutation, which is often called as the Goldreich-Levin theorem. So, let 𝑓 be a one-way

function or one-way permutation, then we can always convert this function 𝑓 to another function

𝑔 which is a one-way function or one-way permutation, how we can convert this function 𝑓 to the

function 𝑔?

Well, 𝑔 will be now a 2 input function even though your 𝑓 was a 1 input function, but the other

input of this 𝑔 function is always produced in the output. And the first part of the output is the

output of the function on the input 𝑥. So, basically you can imagine that 𝑔 is almost the same as

your 𝑓 function, it is just that I am supplementing it with a random input or some other part of the

input which will be given as it is in the other part of the output, where the length of the 2 inputs

for the 𝑔 function should be same.

And a claim is that if your function 𝑓 was a one-way function or a one-way permutation and so is

the function 𝑔. And this can be very easily proved through a reduction, namely, we can prove that

if given just 𝑓(𝑥) and 𝑟, you can compute back 𝑥 in polynomial amount of time. Then using the

same algorithm, I can do the following, just given 𝑓(𝑥), I can compute 𝑥 in polynomial amount of

time.

But that is a contradiction to the assumption that f was a one-way function or one-way permutation

at the first place. Now, the GL theorem is the following, it says that corresponding to this function

𝑔, the associated hardcore function is the following. So, the hardcore function associated with this

function 𝑔 is the following. It is basically equivalent to computing this XOR. Namely, computing

a XOR of random subsets of bits of 𝑥, why random subsets of bits of 𝑥 because 𝑟 will be chosen

uniformly at random.

So, basically it says that even if I give you 𝑓(𝑥) as well as 𝑟 but I do not tell you what is 𝑥. Then

computing this linear combination of the bits of 𝑥 in polynomial amount of time with probability

better than half is not possible, that is what this theorem proves. Again, all these things I am taking

from my earlier course on foundations of cryptography, I am quickly recapping all those things.

(Refer Slide Time: 27:47)

Now, what we are going to see is the following. We have seen the 1 out of 2 bit OT based on the

RSA hardcore function, so this was based on RSA assumption and RSA hardcore function, we

will now generalized whatever actions Alice and Bob have taken this protocol based on we have

a one-way trapdoor permutation and its associated hardcore function. By the way, this RSA

permutation is indeed a one-way trapdoor permutation because the forward direction function was

𝑓𝑒 and the trapdoor information there are the prime factors of your 𝑁 namely 𝑝 and 𝑞.

Because if someone has this trapdoor 𝑝 and 𝑞 then it can compute the exponent 𝑑 and then it can

invert 𝑦, namely it can compute 𝑦𝑑𝑚𝑜𝑑𝑁. So, what we are now going to see is instead of RSA

one-way trapdoor permutation if you are given any one-way trapdoor permutation and by the way,

we have several candidate one-way trapdoor permutation available based on various number

theoretic hard problems.

So, you take any one-way trapdoor permutation and follow the following blueprint which I am

going to discuss and that will give you a 1 out of 2 bit OT. Why this is important, why studying

the generalized version of the OT construction is important? Because if tomorrow there is any

weakness which have which is reported with respect to the RSA permutation, then you can follow

the blueprint that I am going to discuss and then replace the RSA one-way trapdoor permutation

by any other candidate one-way trapdoor permutation against which no weaknesses are yet

reported.

So, this will be the general OT protocol, here again Alice will have 2 messages which are bits. Bob

has a selection bit. Now, Alice will do the following. So, we will assume that we have trapdoor

permutation scheme available whose details are publicly known, trapdoor permutation scheme

namely everyone knows the parameter generation algorithm the function 𝑓 and its inverse and

there is a corresponding hardcore bit associated here.

By the way, I am assuming that this function 𝑓 is from the set 𝒳 to 𝒳. Everyone knows all those

details. Now, Alice is going to generate the parameters as follows. So, she will run the parameter

generation algorithm which will give her a public parameter and a secret parameter and she is

going to make the public parameter available in the public domain. Now, if you compare this step

with the RSA based OT protocol, this step is nothing but Alice running the RSA parameter

generation algorithm and making 𝑁 and 𝑒 available in the public domain.

And she is retaining this secret parameter 𝑠𝑘, the secret parameters were 𝑝, 𝑞 and 𝑑 which were

written by Alice in the RSA based OT protocol. Now, what Bob is going to do is Bob is going to

pick an element 𝑠 whose LSB he knows and another element 𝑇. This is equivalent to Alice Bob

picking the group elements 𝑠 and 𝑇 from ℤ𝑁
∗ , but now I am not taking ℤ𝑁

∗ because I am now taking

about an abstract function 𝑓 which is from the set 𝒳 to fancy 𝒳.

What is going to do is he is going to compute the output of the one-way function on the input 𝑠.

How he can compute well he knows the public parameter. So, he can always compute this and he

knows the description of the function 𝑓. Again if you compare it with the RSA based OT this step

is equivalent to Bob computing the output of RSA function on the group element 𝑠 and now

depending upon his choice bit whether it is 𝑏 = 0 or 1, he is going to send the elements 𝑆 and 𝑇.

So, if it is 0, then he has sent 𝑆 followed by 𝑇, if it 𝑏 = 1 then he sends 𝑇 followed by 𝑆. The idea

is that Bob is interested to receive 𝑚𝑏 and this message 𝑚𝑏 Alice should somehow encrypt using

the LSB of the 𝑠 which is known only to Bob. But Alice should not be aware of which of these 2

messages or which of these 2 elements is 𝑆 and 𝑇 is actually the output of 𝑓 function on the element

𝑠 because she is not aware of the element 𝑠.

So, what she is going to do is she is going to compute the inverse of both the elements 𝑆 and 𝑇.

By the way, she does not know whether 𝑐0 is 𝑆 or whether 𝑐1 is 𝑆 in whatever order she has

received the elements to take them in the same order and just compute the inverse function of the

trapdoor permutation. Can she compute? Yes, because she has the knowledge of the secret

parameter and focus on the LSB of the recovered elements.

So, basically, one of these 𝑟0 and 𝑟1 is the LSB of the element 𝑠 and other mask here is the LSB of

the element 𝑡 what exactly is the case Alice is completely unaware. And again, this step is not

equivalent. It is generalization of the step wherein the RSA based OT protocol Alice has computed

the RSA inverse for the element 𝑐0 and 𝑐1. And now she is going to do the following.

She will send a masking of the message 𝑚0, a padded version of the message 𝑚0, where 𝑟0 is

serving as the one time pad and she is padding 𝑚1 with the message bit 𝑟1. Now Bob will be able

to unmask 1 of these to receive the messages. So, what he can do is he can take the element as 𝑠

which he himself has picked. Focus on its LSB and unmask it from the element 𝑑𝑏. For the other

element𝑑1−𝑏, he cannot do anything because he would not be knowing what is the LSB or the

pad 𝑟1−𝑏.

Because this is nothing but the inverse of the element 𝑇, but he cannot compute the inverse of the

element big 𝑇 because he do not have the knowledge of secret parameter and that exactly was the

case for the RSA based OT protocol, Bob there could compute 𝑚𝑏, but he cannot compute 𝑓1−𝑏

because the other message is padded or masked with 𝑟1−𝑏 which is the LSB of the inverse of the

element 𝑇 which he cannot compute because that is equivalent to computing the hardcore function

or hardcore bit.

So, now you can see that how this RSA based OT protocol can be generalized to an OT protocol

where it could be any one-way trapdoor permutation and it is associated hardcore bit which is used

to do the masking of the inputs of Alice.

(Refer Slide Time: 36:25)

So, a lot of things which I have used in today's lecture namely RSA assumption, hardcore bit

etcetera those details I have taken from my earlier course on foundations of cryptography which

is available on NPTL. As part of oblivious transfer again, as I said, when we started discussing

about oblivious transfer, it is a fundamental problem in cryptography protocols.

Here are plenty of resources, plenty of research, which is going on with respect to oblivious

transfer. So, at Indian Institute of Science CRIS lab, very nice study group was conducted on

oblivious transfer itself where they discussed lots of fundamental results related to oblivious

transfer, also discussed state of the art related to oblivious transfer. So, a lot of materials which I

have taken for preparing the slides are taken from this source. With that, I end this lecture. Thank

you.

