
Secure Computation: Part 1 
Prof. Ashish Choudhury 

Department of Computer Science & Engineering 
International Institute of Information Technology-Bengaluru 

 
Lecture - 43 

Pre-Processing Phase for the GMW Protocol: The n-Party Case 
 

Hello everyone, welcome to this lecture. 

(Refer Slide Time: 00:32) 

 

So in the last lecture we have seen the pre-processing phase for the GMW protocol for 

the Boolean ring case. And we saw the 2-party case based on OTs. We will now 

extend that method for the n-party case and the extension is very trivial, okay. 

(Refer Slide Time: 00:48) 

 



So for the n-party case, our goal is again divided into two stages. In stage I we have to 

generate additive secret sharing for the bits, a 1 to a L, b 1 to b L where the bits a 1 to 

a L and b 1 to b L should be uniformly random and every party should have a bit 

share for this bits so that the corrupt party’s shares does not reveal anything about the 

underlying shared bits, okay. 

 

And again, this can be done by just extending the randomness extraction procedure 

that we had discussed in the last lecture to the n-party case. So this Rand-Extract 

procedure will generate a secret sharing for one random bit, we can run it 2L times to 

generate 2L number of random bits in a secret shared fashion. And again I 

demonstrate, let me demonstrate this process assuming n is equal to 3 and t is equal to 

2. 

 

Each party will now act as a dealer and secret share a random bit. So P 1 acts as a 

dealer, secret shares q 1. P 2 acts as a dealer, secret shares the bit q 2. P 3 acts as a 

dealer and secret shares a bit q 3 which is random. Now what we can say is that since 

there is at least one honest party among these n parties, so for simplicity assume that P 

1 and P 2 are the bad guys. So they know the full values q 1 and q 2. 

 

But they do not know what is the bit q 3 shared by the third party because that is 

coming from the privacy property of your additive secret sharing. For the third bit P 1 

and P 2 together jointly holds two shares, but the third share is missing for them. It 

could be any random share and hence it could be any random bit q 3 shared by the 

third party. 

 

So to generate or randomly extract a uniformly random bit, we define a linear 

function g which takes as inputs the bits shared by the respective parties namely the q 

bits which are respectively shared by the parties P 1, P 2, P n. And output is defined to 

be the XOR of the input bits, this is a linear function. 

 

And since it is a linear function, it can be applied on the shares of the input values and 

that will produce the shares of the output values. And this can be done locally. So that 

means if each party just exhort their respective shares of all the q values that will give 

them respectively their shares of the r value. 



 

And my claim is that this value r this bit r is now a uniformly random bit from the 

viewpoint of the two corrupt parties or n – 1 corrupt parties. This is because this here 

is a very nice bijection which is defined by the function g between the q bit shared by 

the honest party and the resultant output r. What does that mean? Again, taking this 

example since the first two parties are corrupt here, they know the values q 1 and q 2, 

okay. 

 

So they know q 1, the bit q 1, they know the full bit q 2, but they do not know what is 

the full bit q 3. It could be either 0 or 1. So if it is 0 then that leads to a candidate r. If 

it is 1 it leads to a candidate r prime. But since q 3 is picked uniformly at random, the 

resultant r could be 0 or 1 with equal probability. 

 

And the two corrupt parties would not be knowing what exactly is the output r which 

is now finally secret shared because for the value r they will be only having two 

shares, okay. So that will be the stage I for the n-party case. 

(Refer Slide Time: 04:46) 

 

Now we have to focus on stage II. And now for the stage II again, the goal will be to 

do the following. You have the a component and b component of all the L 

multiplication triples which are secret shared, that has been done already in stage I. 

We have to now run OT instances among the n parties so that the and of the a and b 

component is also made available in a secret shared fashion among the parties. 

 



But in the process, nothing additional about the bit a and the bit b should be revealed. 

And the idea here will be a very simple generalization of the idea which we had for 

the 2-party case. In the 2-party case there were two cross terms which were the source 

of problem and we somehow securely computed a secret sharing of those two cross 

terms itself based on OT instances. But now we are in the n-party case. 

 

And here between every pair of parties P i and P j where i is different from j, there are 

two cross terms, namely a i times b j, and a j times b i, right? And we have to 

somehow securely compute these two cross terms by executing the OT instances. So 

in general, if we have n parties, there will be order of n square number of cross terms. 

 

And for every pair of cross terms involving every pair of two distinct parties, we will 

run two OT instances to get securely to securely compute those two cross terms. So 

let me demonstrate what I am saying here. So between 1 and 2, P 1 and P 2, we have 

the cross terms, a 1 times b 2, and a 2 times b 1. We cannot afford to reveal a 1 or b 1 

to the second party. In the same way, we cannot afford to reveal a 2 or b 2 to the first 

party. 

 

But somehow we want to securely compute a secret sharing of a 1 times b 2 and a 2 

times b 1 only among these two parties. How we can do that? Just run the OT based 

idea that we had discussed in the last lecture for the 2-party case, assuming that there 

is no third party and our cross terms are only a 1 times b 2 and a 2 times b 1. Namely 

the first party, it acts as a center in one of the OT instances by masking his a share. 

 

And the second party is acting as a receiver with b 2 as his choice bit. Whereas the 

second party acts as a sender in the other OT instance by masking is a share with a 

random mask and the first party he acts as a receiver with his b share as the choice bit. 

And as a result of the correctness of the OT instances, the second party will receive a 

masking of a 1 times b 2. 

 

The first party will now receive a masking of a 2 times b 1. So that will take care of 

the cross terms involving P 1 and P 2. In the same way let us focus on the cross terms 

involving the second party and the third party assuming there is no first party. And 



there are now two cross terms involving these two parties. So run the similar idea 

here. Oh sorry, I am demonstrating right now the first and the third party, sorry. 

 

So between the first and the third party okay, so a 1 and b 3 are involved, that is one 

cross term. And a 3 and b 1 is involved. So again, P 1 acts as a sender masking his a 

share. And now that this masking is done using an independent pad which is different 

from the pad which was used to mask his share of a when he interacted with the 

second party, right? 

 

And in the same way the third party acts as a sender in one of the OT instances with 

her share of a and masking it with a random pad, okay. And now based on the choice 

spades, the cross term, a 1 times b 3 goes in a masked fashion to the third party. That 

cross term a 3 times b 1 goes in a masked fashion to the first party. 

 

And now there will be another OT instance involving the second and the third party to 

take care of the cross terms a 2 times b 3 and a 3 times b 2 okay, where again 

independent masks are used. And now the overall share of a times b for the three 

parties will be as follows. So there will be something which they can locally compute 

namely a i b i. So P i can compute a i b i. 

 

And now P i will do the following. For all the OT instances where he acted as a 

sender, right so he acted as a sender in two OT instances. So this OT instance he set 

this as a mask and this OT instance he set as a mask. So he will XOR them. And he 

acted as a receiver in two OT instances. So whatever he received in those two OT 

instances, the XOR term. That will be his overall share for the and of a and b. 

 

And same logic P 2, first compute a 2 b 2 and then whatever the mask he has picked 

while acting as the sender for OT instances and whatever are the masked cross terms 

he has received as a receiver in the OT, instances everything masked together that will 

be c 2 and similarly for P 3. And now you can see here that indeed c 1 XORed with c 

2 XORed with c 3 gives you the and of a and b. 

 

And the security of the bits a and b are preserved because for each independent OT 

instances random masks are used for masking the a shares or the b shares, sorry for 



masking the a shares and the privacy of the shares of b is maintained because that 

comes from the privacy of the receiver’s choice bit. 

 

And hence you can now see that the pre-processing phase for the, stage II of the pre-

processing phase for the GMW protocol based on the OT instances how naturally it 

extends the n-party case. You do not have to do anything sophisticated here. Thank 

you. 

 


