
Secure Computation: Part I
Prof. Ashish Choudhury

Department of Computer Science Engineering
Indian Institute of Technology-Bengaluru

Lecture-46
OT Extension

(Refer Slide Time: 00:32)

Hello everyone, welcome to this lecture. So, in this lecture we will see a very nice and beautiful

protocol for oblivious transfer due to a Ishai et al.

(Refer Slide Time: 00:41)

So, just to quickly recall the goal of the oblivious transfer extension is the following. Suppose

sender and receivers are going to be involved in polynomial of λ number of OT instances. We want

to get the effect of those OT instances by just executing λ number of OT instances between Alice

and Bob and performing some additional symmetric key operations.

(Refer Slide Time: 01:13)

So, the protocol that I am going to discuss today it is called as IKNP OT extension protocol. A

very beautiful protocol published in this paper in CRYPTO 2003. And let us see the roadmap for

doing the OT extension. To do the OT extension we will 1st let Alice and Bob participate in λ

number of OT instances, where the inputs of the sender are going to be λ bits and now assuming

that sender and receiver have executed λ number of OT instances with λ bit inputs.

We will get the effect of λ number of OT instances but where the sender's inputs are now k bit

long, where k is significantly large than λ. Namely, k is some polynomial function of your security

parameter. And how do we go from here to here? We had already seen how to go from here to

here, this is done through domain extension. We know that by running the domain extension

technique which we had seen in the last lecture.

It is possible to get the effect of λ number of OT instances where the sender's input is k weights

which is significantly large than the security parameter by actually running the same number of

OT instances but on shorter inputs. So, we know how to get this thing done. But this is not the goal

of OT extension, we are still running λ number of OT instances, we want to get the effect of

polynomial of λ number of OT instances.

So, the actual OT extension protocol which is the transformation 2 is to take these λ number of OT

instances with k bit inputs and transfer it or transfer in the sense transform it into the effect of k

number of OT instances, where sender’s inputs are now l bit long. Of course l is going to be some

polynomial function in your security parameter and now since k is also polynomial function of

your security parameter.

Now you can see that we have actually transformed λ number of OT instances into k number of

OT instances, where the inputs are now l bit long strings, so that is a roadmap. One part of the

whole transformation, namely transformation 1 we had already seen, the question is how do we

get this done? So, now our focus for today's lecture will be on transformation number 2.

(Refer Slide Time: 04:10)

So, what is the goal of transformation number 2? We have sender and receiver, so we make Alice

as the sender, Bob as the receiver. Alice has k pairs of messages, they may not be random

messages, they are some private inputs, private messages held by Alice. And in each pair the

message length is l bit. Here k is some polynomial function of your security parameter λ. And now

for each pair Bob has a choice picked, so from the 1st pair he is interested to receive the message

with index b 1 and like that from kth pair he is interested to receive the message with index bk. We

want a protocol according to which Alice and Bob should interact.

And finally depending upon the indices in his vector B, from each pair he gets the corresponding

messages. So, from the 1st pair, he gets the message with index b 1 and like that from the kth pair

he gets the message with index b k. But for every pair he does not learn anything about the other

message that is what will be the sender security. Whereas the receiver security will be that Alice

should be completely unaware about what message from each pair got transferred to Bob. Namely,

she should not learn anything about this choice vector B that is what we want to ensure.

Of course one way of doing this is that Alice and Bob run k number of OT instances, where for

the 1st OT instance is used for the 1st pair, the 2nd OT instance is used for the 2nd pair and like

that the kth OT instance is use used for the kth pair. We do not want to do that, we want to run

only λ number of OT instances and still get this whole thing done. So, how this is done? Imagine

for the moment that we have a magical mechanism to do the following.

How exactly this magical mechanism is implemented? That is the whole crux of this

transformation number 2 but for the moment let us first try to understand the requirements of this

magical mechanism, what exactly we want to get done through this magical mechanism? In this

mechanism, Bob is going to pick a random matrix of values. Let me call that a random matrix at

matrix T, it is a matrix of size k cross λ, so it has key number of rows and λ number of columns.

And Alice is going to pick a completely random vector of length λ bits, call it S. And somehow

the magical mechanism allows the Alice and Bob to interact and get Alice matrix call it Q, which

is also of same size as T. So, let me call the rows of Q as Q1, Q2, Qi, Qk. And how exactly the rows

of this Q matrix is related to the rows of T matrix? Well, it is related depending upon the entries

in Bob's choice vector, so remember Bob has a choice vector B.

Now, let us see the relationship between Q 1 and T 1, if b 1 = 0, then Q 1 will be same as T 1. If b 1

= 1, then q 1 will be T 1 blinded with S. And in the process Alice should not learn what exactly is

the value of Q 1, namely she should not learn anything about the value of b 1. She will be receiving

a row of length λ bits that is the Q 1, but whether it is T 1 or whether T 1 blinded with S, she should

not learn. Similarly Q 2 will be either equal to T 2 or T 2 blinded with S depending upon whether b

2 is 0 or 1.

And in the same way Qk will be either Tk or Tk blinded with S depending upon whether the last

choice bit bk is 0 or 1. That is what is the whole purpose of this magical mechanism, how exactly

this is implemented? Forget about it. That is the whole crux of OT extension or transformation to

which we are going to see next. But assume for the moment, it is possible for Alice and Bob to do

this or to get this done.

And Bob should not learn anything about S in the whole process that is also is important. So, Alice

should not learn anything about the choice vector B. That means whether the rows of the matrix Q

or the T rows or whether the T rows blinded with S whereas a corrupt Bob should not learn

anything about S. That is what we want to ensure through this magical mechanism. Assume for

the moment this is done, assume this is done.

Now the question is how exactly we get the actual OT done? Remember, sender has to somehow

send the k pair of messages to Bob and it should be done in such a way that for each pair Bob

should get back only one of the messages depending upon his corresponding choice bit. And for

doing that we want this interaction between Alice and Bob, so that Alice gets this Q vector. Now

the idea here will be the following.

To get the actual oblivious transfer done, Alice has to use somehow the ith row of Q and ith row

of Q XORed or blinded with S, she has to use these 2 piece of information to transfer the 2

messages in her ith pair. And that is why the number of rows in the matrix here is k because she

has k pair of messages to transfer. For each pair of message she is going to use a row of the Q

matrix and a same row blinded with S.

And she has to use those 2 piece of data to send her messages for ith pair and it should be done in

such a way that Bob should get back only the message with index b i for the ith pair by just using

the ith row from his T matrix, that is a whole idea. So, based on whatever we have seen in the

oblivious transfer protocols till now, you might be tempted to propose the following. That let Alice

do the following, for each of a rows i ranging from 1 to k, encrypt the 0th message in ith pair using

Q i.

And encrypt the other message in the ith row using Q i XORed with S as the pattern. Now we

know that Q i and Q i XORed with S, one of them is definitely T i, definitely we know this. Alice

does not know whether it is Q i which is T i or whether it is Q i XORed with S which that is T i.

Because she does not know the value of index b i but she knows that ok one of these entries, namely

Q i and Q i XORed with S is T i. So, that is why she is tempting to encrypt the 0th message and the

ith pair with Q i and the message with index 1 with the paired Q i XORed with S.

And a hope is that Bob should be able to recover back the message with index b i in ith pair by

unmasking T i because he has T i. And Alice will hope that since Bob does not have S, because

Bob has not learned the value of S in the magical mechanism. He cannot figure out what is the

message with index 1 - b i in the ith pair. Because that will require the knowledge of S and Alice

will think that ok, Bob does not know S. So, you might be tempted to propose the following way

of sending the messages from Alice to Bob. Assuming that this magical mechanism of

communicating the rows of T in an obvious way to Alice has been done but there is a slight problem

here.

(Refer Slide Time: 13:52)

Problem number 1 is the following. What are the length of the messages available with Alice?

They are all l bit long. But what is the length of the rows of the Q matrix and the T matrix? They

are only λ bit long. So, you have an incompatibility in the size. How can you mask l bit long string

using a λ bit string? That is not possible. One way of getting around this problem is that ok, let

Alice use a pseudorandom generator on the rows of Q and expand it to get a suitable pad and then

do the actual masking of our messages and get it transferred to Bob, fine, that might solve your

problem.

But a bigger problem is this problem number 2, there is a huge security bug involved here. And

the security bug that is involved here is the following that is because of the following. If you

consider both the messages in the ith pair, they are actually masked using related pads; they are

not completely independent pad. One of the messages is XORed with Q i, another message is Q i

XORed with S and it is the same as which is used across all the pairs of Alice.

If S would have been independent for each of the pairs of Alice, then again no problem but it is

the same as which is used across all the pairs of messages which Alice wants to communicate to

Bob. So, if you say for instance, take a case where Alice has just 2 pairs of messages and if it is

the same as which is used and Alice uses the same as to transfer both pairs of our messages. Then

a very simple attack which Bob can launch is the following.

If we XORes the encryptions of the all the messages that he is receiving, then the effect of S and

S will cancel out. And Bob might end up learning the XOR of all the messages of Alice, apart from

of course the message that he is interested from each pair and that is a security breach here. So,

that is why we might be tempted to use this idea of using the rows of the matrix Q to encrypt the

messages available with Alice, doing it in the naive way will not work.

(Refer Slide Time: 16:30)

But we still want to retain this idea because once this magical mechanism is done, this obviously

communicating the rows of T to Alice. Then almost we are done here, the only question is that

how exactly the rows of Q can be used to mask the pair of messages which are available with

Alice. And here we use a very nice technique; we use a hash function which we call a co-relation

robust hash function.

And his hash function takes a pair of inputs, the first entry is an index in the range 1 to k and the

second entry is a λ bit string and it produces a string of length l bits. Why it is called co-relation

robust hash function? By co-relation robust hash function, we mean that the joint probability

distribution of this 2 k number of entries is pseudorandom from the viewpoint of a computationally

bounded adversary or distinguisher.

That means if I want to compare this distribution with another distribution, where the 1st k entries

are random. So, the 1st k entries are T 1 to T k, which are the rows of this matrix T and they are

picked uniformly at random. So, the rows T 1, T 2, T k they are all uniformly random λ bit strings.

So, in the other distribution which I am considering here, the 1st k entries are also the rows of T,

so they are uniformly random.

But the last entries, last k entries they are also see random λ bit strings r 1, r 2, r k. By co-relation

robust hash function I mean that if we consider a probabilistic polynomial time distinguisher who

is either given a sample of type this where the 1st k entries are random and last k entries they are

generated by running the hash function with respect to T 1 to T k and a fixed S, where the S is not

fixed as are uniformly random S, but S is not known of course.

Because if S is also given to the distinguisher then he can figure out whether he is seeing a sample

of type this or a sample of type this, where all the 2 k entries are uniformly random. So, S is random

and private and there is a polynomial time distinguisher who is either given a sample where all the

2 k entries are uniformly random λ bit strings or he is given a sample of type half random and half

generated by running the hash function but with respect to a random S which is not aware.

Then by correlation robust hash function we mean that from the viewpoint of a probabilistic

polynomial time distinguisher both these distributions are almost identical. He cannot figure out

whether he is seeing a sample of type half random followed by other half generated by running the

hash function or a sample where all the entries are uniformly picked at random. Now the question

is how do we built this such correlation robust hash function.

So, it turns out that if we assume a random oracle model then again people who have taken the

course on foundations of cryptography. They know what do we mean by random oracle model? It

is basically a strong model where we assume very strong properties from a hash function. Basically

we assume that it is behaving like a uniformly random function and a interaction with the hash

function is modeled through oracle queries.

And then in that model we prove certain nice properties for the cryptography constructions which

uses the hash function. So, if we assume random oracle model then we can take any hash function

in the random oracle model and we can get this notion of co-relation robust hash function. But for

practical instantiations you can take the so called secure hash functions that we are available with

say the sha functions and so on. So, assuming such a co-relation robust hash function is available,

here is how Alice is going to encrypt the messages using the rows of the matrix Q.

(Refer Slide Time: 21:28)

Suppose, we take the ith pair, in the ith pair, we have the messages with index 0 and index 1. For

encrypting the message with index 0, she computes a pad by computing the output of the hash

function on input pair i and Q i. And to encrypt the other message in the ith pair, she again computes

a pad but now with input pair i and XOR of Q i and S. And that is how she encrypts all the pairs.

And the idea here is that as we said earlier that Alice knows that one of the entries Q i are Q i

XORed with S is going to be T i, which of them is T i? She does not know, Bob knows the T i, so

he can unmask the ciphertext with index b i from the ith pair. But he cannot find out the other

message because of this notion of co-relation robust hash function. So, that means, even if he is

seeing the encryption of all the messages, where it is the same as which is used to prepare the pad

unlike the previous mechanism, where it was directly the ith row and a ith row XORed with S

which were used as pad and the same S was involved in all the encryptions.

We are not directly using Q i and XOR of Q i and S to mask the messages. We are actually running

the hash function to generate the pads and since the value of faces not known to Bob. Because

during this magical interaction, which we are assuming to exist, we assumed that Bob does not

know anything about S. And if he does not know anything about S, then the co-relation robust

hash function assumption ensures that all the pads which are used by Alice.

So, Alice has used these 2 k pads in some order, in what order? She has used these pats Alice is

not aware because she is not aware of Bob's choice vector. But she has used the pads T 1 to T k and

hash outputs of T 1 XORed with S, T 2 XORed with x, T k XORed with S in what order? We do

not know. Now Bob will be knowing only the T 1 to T k components of this vector of pads but he

cannot figure out anything about the remaining k components of the pats because of this co-relation

robust hash function assumption.

And hence he cannot unmask the remaining k messages that are held with Alice and that ensures

roughly Alice’s security. So, now everything boils down to how exactly we get this magical

mechanism done and that is what is the whole crux of your transformation number 2.

(Refer Slide Time: 24:41)

So, now we will focus our attention on this magical mechanism how exactly this matrix T gets

obliviously transferred to Alice, without Alice learning anything about Bob's choice factor B? And

Bob not does not learning anything about this uniformly random S which Alice has picked and

this is done as follows. So, till now no oblivious transfer protocol has been involved. Assuming

that magical mechanism has been done, the actual transfer of messages from Alice to Bob just

involves computing pats by running the hash function and XORing the pats with the Alice

messages and sending to Bob.

So, you might be wondering where exactly oblivious transfer instances are involved, they are

involved in this magical mechanism. So, as I said earlier, Bob picked this vector of random values,

T, it has k rows and λ columns. I can interpret the same matrix T in terms of columns as follows.

I can imagine that, let me call the 1st column of this T matrix as T1, let me call the ith column of

this T matrix as T i and let me call the λth column as the column Tλ.

So, I am just observing, I am just viewing the matrix T in terms of it is column, I am not computing

the transpose of the matrix T, remember. I am just viewing the entries in T in terms of it is column,

I am calling those columns as T1, Ti, Tλ. There will be λ such columns and the length of each

column will be k. Now Alice and Bob are going to participate in λ number of OT instances. And

it is the bob who is going to play the role of sender and Alice who is going to play the role of

receiver.

Now this might be confusing because our actual goal was to let Alice play the role of sender, she

had k pair of messages and from each pair she wanted to communicate 1 message to Bob and Bob

was the receiver. But for getting it done, we require this magical mechanism to be executed. And

for this magical mechanism, it is the Bob who is going to play the role of sender and Alice who is

going to play the receiver.

Now let us see the inputs of Bob in these OT instances. In the 1st OT instance his messages are

going to be the 1st column of this T matrix and the 1st column XORed with his choice vector B,

both of them are k bit long. In the same way if I consider the ith instance, it is the 0th message for

the ith instance which Bob is feeding is his ith column of the T matrix. And other message is the

ith column XORed with his choice vector.

And like that, if I consider the last OT instance these will be the inputs. And Alice will participate

with the individual bits of the S vector as her choice bits. Now, based on the correctness property

of the oblivious transfer protocol through each of the OT instance Alice is going to recover or

receive the outputs Q1, Q2, Qi, Qλ.

Now let me arrange them column wise and view the entire matrix of values as the matrix Q and

my claim is that this magical mechanism has been achieved. That means, by doing this oblivious

transfer instances Alice now has the Q matrix and a Q matrix indeed satisfies this property. So, let

us analyze that.

(Refer Slide Time: 29:19)

Let us analyze whether indeed Alice got what we wanted to get her? So, the matrix which Alice

got at her end consists of this λ columns, column number Q1, Qi, Qλ. And what can I say about the

1st column that she has received, Q1? It is either the column T1 or it is the column T1 XORed with

B depending upon what was the 1st choice bits in Bob’s choice vector B.

So, I can say that Q1 is nothing but T1 XORed with S 1 times B. Sorry for the mistake I said it

incorrectly, depending upon what is Alice choice bit S 1, she either gets the 1st column of T or the

1st column of T XORed with Bob's choice vector B, that is the right statement. In the same way,

if I focus on the last column that Alice received, it is either the last column of Bob's matrix T or

the same column XORed with B provided the choice bit of Alice was 1.

So, I can say that this relationship holds. So, this relationship I am taking out the XOR outside and

I can say that the Q matrix which Alice received at her end is same as the T matrix of Bob XORed

with this matrix. And now, what I am doing is, I am just reinterpreting the columns which Alice

has received and viewing it in terms of rows. Again, I am not computing the transpose of the matrix

Q, I am not making the columns as the row and so on.

So, I am just focusing now the entries of the Q matrix in terms of it is row. So, I can say that the

1st row is Q 1, the ith row is Q i and a kth row is Q k. And in the same way, I am now interpreting

the Bob's matrix T in it is original form in terms of rows. And now what can I say about the 1st

column here, S 1 times B? Remember, B is this whole choice vector, so S 1 times the choice vector

B is going to be component wise S 1 times b 1, S 1 times b 2 and like that S 1 times b k, so that is

what is S 1 times B.

And like that, the last column here will be S λ times B, that is the relationship between the Q matrix

and the T matrix. And now you focus on the ith row of the Q matrix which Alice has received. I

can say that if b i would have been 0, then Q i would be same as T i otherwise it will be T i XORed

with S. So, say for instance, if I take the say the 1st row of Q matrix, the 1st row of the Q matrix

is Q 1, it is T 1 XORed with the 1st row here.

By the first row here everywhere we have b 1 times something, so b 1 times S 1, b 1 times S 2, b 1

times S i, b 1 times S λ. So, if b 1 would have been 0 then this whole 1st row would have become

0, in which case Q 1 would have been T 1. If b 1 would have been equal to 1, then this 1st row

would have been same as the vector S. And hence Q 1 would have been T 1 XORed with S and the

same logic holds for the other rows as well.

And then we can say that this is the property which holds with respect to the ith row and this is

what precisely we wanted to do. We wanted to somehow transfer either the ith row of T or the ith

row XORed with Alice vector S, without letting Alice know whether she got the ith row of T or

the ith row XORed with S and that is what got transferred to Alice. And hence the magical

mechanism has been achieved. Now of course we have to analyze the security of this magical

mechanism, how much computation it involves and so on, which we are going to do in the next

lecture. Thank you.

