
Secure Computation: Part I

Prof. Ashish Choudhury

Department of Computer Science Engineering

Indian Institute of Technology-Bengaluru

Lecture-52

Interpreting Yao’s Secure 2PC Protocol as a Secret Sharing Based Protocol

(Refer Slide Time: 00:32)

Hello everyone, welcome to this lecture. So, in this lecture we will see how to interpret Yao’s 2

party protocol as a secret sharing based protocol, where the parties will be evaluating the circuit

based on the semantics of what we call as Yao’s 2 party secret sharing. So, we will see the full

syntax and semantics of Yao’s 2 party secret sharing, what exactly is the sharing protocol,

reconstruction protocol and how the shared circuit evaluation is done as per this sharing semantic.

(Refer Slide Time: 01:04)

So, recall that in the Yao’s 2 party protocol we have 2 parties - one of the parties performing the

role of garbler who garbles the circuit and another party plays the role of evaluator. And what do

we want to do here? We want to view this entire protocol executed between the circuit constructor

and a circuit evaluator as some kind of secret sharing based protocol where the 2 parties are jointly

evaluating the circuit in such a way that the collective view of any single party does not reveal

anything about the underlying values and the input values. And that precisely is the invariant which

we maintained till now, when we saw the secret sharing based MPC protocols. So, remember that

we saw the BGW protocol as well as the GMW protocol.

And in both these protocols, the party contains the invariant that each value during the circuit

evaluation remains secret shared with threshold 𝑡 in such a way that the collective view of any

subset of 𝑡 Parties does not reveal anything about the underlying values. We want to do something

similar even in the context of Yao’s 2 party protocol. And in the context of Yao’s 2 party protocol

we are in a special case because there are only 2 parties and one of them is allowed to be corrupt.

So, what do we want to do now? We want to view visualize the entire computation done in the

Yao’s 2 party protocol as an instantiation or as a special case of secret sharing based protocol. So,

for that we have to first identify what exactly is the sharing semantic of the so called Yao’s 2 party

secret sharing scheme and once that semantic is clear, we the have to understand how exactly the

computations done by the 2 parties can be visualized as a special case of secret sharing based

protocol. Now, you might be wondering why exactly we want to do this. This will be later useful

when we will see how the parties can perform mixed set computation.

(Refer Slide Time: 03:25)

So, now let us go through the Yao’s 2 party secret sharing semantics. And remember, we have 2

parties here - one of the parties playing the role of constructor, another party playing the role of

evaluator. So, they perform different roles unlike the BGW protocol and GMW protocol where the

actions performed by all the parties are symmetric, symmetric in the sense they perform similar

actions.

In Yao’s protocol, the constructor plays a different role compared to the evaluator. So, imagine we

have a gate like this and we will be considering Yao’s 2 party secret sharing semantics based on

the point and permute optimization plus the free-XOR technique. Of course, if you do not want to

follow the point and permute optimization or the free-XOR then secret sharing semantics will be

slightly different.

For our discussion, we will assume that the 2 parties are interested in evaluating the circuit by

following the point and permute optimization coupled with the free-XOR technique. So, as per

this sharing semantic there will be a global offset 𝑅 which will be randomly chosen by the

constructor. And it will be known only to the constructor and this will be fixed at the beginning of

the protocol.

Remember, every time the protocol is executed, Yao’s protocol is executed, the offset will be

selected from the scratch, not the case that the same value offset is used once is used for all the

instances of Yao’s protocol between Alice and Bob. So, this random offset 𝑅 is a random bit string

of length 𝜆 bits, where 𝜆 is your security parameter. And it is random except that its LSB is 1, this

ensures that the permutation bits associated with the different keys corresponding to a wire or a

value are complement of each other.

So, now imagine that there is a value 𝑧 and remember in the Yao’s secret sharing protocol all the

values are bits. Because Yao’s protocol is used for evaluating a Boolean circuit, so the bit 𝑧 will

be either 0 or 1. So, we now want to understand how exactly we can imagine or interpret the

computations performed in the Yao’s secret sharing protocol as a case of secret sharing scheme.

And for doing that we have to identify what exactly the shares of Alice will be.

 What will be the shares of Bob for 𝑧 as per the so called the Yao’s 2 party secret sharing semantic?

So, I will be interchangeably using the term wire and value. So, 𝑧 can be interpreted as the label

of a wire or you can also interpret that since 𝑧 is a wire which can take either the value 0 or 1, so

it can have 2 possible values. So, in Yao’s 2 party secret sharing schemes corresponding to this

wire or a value there will be 2 keys associated, both of them are of 𝜆 bits.

One key corresponding to the value 𝑧 = 0 another key corresponding to the value 𝑧 = 1. And the 2

keys namely the keys corresponding to 0 and 1 they are related as per this relationship. Namely, if

we perform the XOR of the key corresponding to 𝑧 = 1 and 𝑧 = 0, we get the offset 𝑅. Moreover,

if this value 𝑧 or the wire 𝑧 is the outcome of XOR gate, then the 0 key corresponding to this value

𝑧 is set to be the XOR of the keys corresponding to the gate inputs.

And as per our sharing semantic of Yao’s 2 party secret sharing, the shares of Alice and Bob will

be as follows. So, the share for Alice will be the 0 key corresponding to 𝑧. And the share for Bob

will be the key corresponding to the actual value of 𝑧. So, what I am saying here is 𝑧 can take the

value either 0 or 1 irrespective of what exactly is the value of 𝑧. Even if 𝑧 = 0, the share of Alice

will be the 0 key associated with 0, even if 𝑧 = 1 the share associated with the share for Alice will

be the 0 key associated with 0.

So, that means the share of Alice is completely independent of what exactly the value of 𝑧 is

.Namely, her share will be always the 0 key associated with that value. The key or the share

associated with Bob will be the actual key corresponding to the actual value of 𝑧. So if 𝑧 = 0, then

Bob's share will be the 0 key corresponding to 0. If 𝑧 = 1, then Bob's share will be the key

corresponding to 𝑧 = 1.

And we will use this notation to represent that the bit 𝑧 is Yao’s secret shared. That means if I

denote the value 𝑧 inside a lock, that means neither Alice nor Bob know the full value of 𝑧, they

only have a share of the bit 𝑧. And this notation means the superscript 𝑌 denotes that the value is

secret shared as per the Yao’s semantic. I would also like to stress here is that even though Alice’s

share for the bit 𝑧 will be only the 0 key corresponding to that bit, implicitly she will be having

both the keys, why so?

Because if you recall the Yao’s secret sharing protocol, it is the GC constructor who picks the keys

corresponding to all the wires in the circuit. So, if 𝑥 is a wire, 𝑦 is a wire, 𝑧 is a wire, Alice would

have picked all the keys corresponding to 𝑥, 𝑦 and 𝑧. As per the sharing semantic, we will say that

her share for the value will be only the 0 key, but implicitly she will be having both the keys

corresponding to that bit.

But she will be oblivious of what exactly the key available with Bob is. Because if she is also

aware of what key is available with Bob, then that means that she knows the value of 𝑧 as well,

which may not be the case. And this precisely matches the way we do this secure computation as

per the Yao’s protocol. If you recall the Yao’s protocol then Alice or the GC constructor does the

garbling.

And later on, if I consider Bob then somehow we maintained the invariant that Bob for each wire

in the circuit holds an appropriate key. Namely, if we consider a wire 𝑤 and if during the circuit

evaluation in clear, wire 𝑤 takes the value 0, then Bob should have the key corresponding to 𝑤 =

0. If during the circuit evaluation in clear 𝑤 takes the value 1, Bob should have the key

corresponding to 𝑤 = 1.

But Bob will be oblivious of whether the key it is holding is corresponding to 0 or 1 and that is

precisely is the sharing semantic of Yao’s 2 party secret sharing. Implicitly, Alice will have both

the keys, Bob will have only one of the keys depending upon the exact value of 𝑧. And Alice will

be oblivious of what exactly the key available with Bob is or what the share of Bob is And Bob

will not be identifying anything about the value of the bit through his share.

Because, remember, the key associated with any bit or any wire is indistinguishable. But since we

are using here free-XOR technique, both the keys associated with a wire are not completely

random. But since the global offset 𝑅 is uniformly random and known only to Alice or the GC

constructor, Bob just based on its share cannot identify whether the key available with Bob as a

share is the key corresponding to the value 0 or the value 1.

So, [𝑧]𝑌
𝑃0

 is the notation which we will use to denote Yao’s share of 𝑧 for Alice or for 𝑃0, so I call

Alice as the party 𝑃0 Bob as the party 𝑃1. And [𝑧]𝑌
𝑃1

notation denotes Yao’s share for 𝑃1 for 𝑧.

Also remember that it is not the case that for the same value of 𝑧, the shares of Alice and Bob will

always be the same because it depends upon the keys associated with the value 0 which are picked

by Alice, so they are picked randomly.

And also the random offset is also picked randomly and that is ensured that every time Alice and

Bob execute the protocol. And if the value of 𝑧 remains the same they might have different shares

with different probability depending upon what are the values of the 0 key, 1 key and what exactly

is the value of the random offset?

(Refer Slide Time: 14:33)

So, that is sharing semantic of your secret sharing. Now we have to see how exactly the sharing is

done by the dealers here. And here we can have 2 possible dealers - either the dealer could be the

constructor itself or the dealer could be the evaluator. And depending upon who is going to play

the role of dealer, the actual sharing protocol will be different. Again, this is unlike your GMW

protocol or BGW protocol where the steps of the sharing protocol are same irrespective of who is

going to play the role of the dealer.

So, for instance in the BGW protocol we have used Shamir secret sharing. The steps of Shamir

secret sharing protocol remains the same irrespective of who exactly wants to share a value. In the

same way in GMW protocol, we used additive secret sharing, and the steps are the same

irrespective of who is playing the role of the dealer. But now in the Yao’s secret sharing based

protocols since the constructor and the evaluator are playing different roles the sharing semantics

are also different here, have different interpretation.

The steps of the sharing protocol will be different if Alice wants to share a value and the steps of

the sharing protocol will be different if Bob wants to share a value. So, let us first see the steps of

the sharing protocol assuming that Alice or the GC constructor wants to share a bit. So, imagine

that she has a private input 𝑧, which is either 0 or 1 which she wants to secret share. For doing that,

she will pick the 0 key associated with the value 𝑧 uniformly at random from the key space.

And the key corresponding to 𝑧 = 1 is picked as per the free-XOR optimization and remember that

the LSB of 𝑅 is 1. And that automatically ensures that the permutation bits for the 0 key and the 1

key they are complement of each other. Remember, we are also following the point and permute

optimization as well. And that requires that the permutation weights associated with 𝑧 = 0 and 𝑧 =

1 should be complement of each other and that is ensured by this restriction, namely the LSB of

the global offset is 1.

And now Alice sets her share for 𝑧 to be the 0 key irrespective of what the actual value of 𝑧 is,

even if 𝑧 = 0 she will set her share to be the 0 key, even if 𝑧 = 1 she will set the key corresponding

to 0 as a share. And now she will give Bob his share for the bit 𝑧 and Bob's share will be the actual

key corresponding to the value of 𝑧. So, if 𝑧 = 0, Bob will get the 0 key, if 𝑧 = 1 Bob will get the

1 key and remember the keys are indistinguishable.

So, just based on the value of the key which Bob is receiving, Bob cannot figure out whether it is

𝑧 = 0 which is secret shared or whether it is 𝑧 = 1 which is secret shared. So, this is how Alice can

secret share her bit. And if you see closely here the secret sharing protocol is nothing but the step

in the Yao secret sharing protocol where for all the inputs in the circuit which are owned by Alice,

Alice provides Bob the corresponding keys are the garbled input.

So, this step is nothing but providing the encoded 𝑧 to Bob and keeping the 0 key as share for

Alice. Now, let us see the steps of secret sharing protocol, if Bob wants to secret share a value.

Thus Bob wants to secret share a value where his private input is 𝑧 then Alice will do the following.

Alice will select both the shares, the 0 share as well as the 1 share or equivalently the 0 key or the

1 key as per the steps of free-XOR technique.

And then she will set her share to be the 0 key associated with 𝑧. Now, we need to ensure that Bob

should get the key corresponding to the actual value of 𝑧 and he should get only that key, he should

not get the other key. And this can be done by executing an instance of oblivious transfer protocol

where Alice plays the role of sender with her messages being the keys corresponding to the values

of 𝑧. And Bob participates as a receiver with 𝑧 as his selection bit at depending upon the value of

𝑧, he gets the corresponding key.

And he learns only that key, he does not learn about other key. So, this will be the protocol which

will be used by Bob to secret share his input 𝑧. Again if you see this protocol closely this protocol

is nothing but the step in the Yao secret sharing protocol where for all the values which are owned

by Bob as the circuit input. Or the function input Bob participates in the OT instances and obtains

corresponding encoded a garbled input. That is precisely what we are doing here; we are adding

an extra step here that we are asking Alice to retain the 0 key as her shares for Bob's input 𝑧.

(Refer Slide Time: 20:39)

Now, let us see the reconstruction protocol. Assuming that we have a bit 𝑧 which has been secret

shared as per the Yao secret sharing protocol. So, suppose there is a bit 𝑧 which has been secret

shared, Alice share is the 0 key, Bob's share is the actual key and now they want to reconstruct a

value 𝑧. To reconstruct a value 𝑧 what Alice and Bob can do the following. They can exchange

their permutation bits of the shares held by them. So, remember this 0 key has a permutation bit

and the key held by Bob also has a permutation bit. If the value 𝑧 = 0, if 𝑧 would have been 0 both

𝑃0, 𝑃1 have same key.

Namely, Alice's share is the 0 key and Bob's a share is also the 0 key and hence LSB will be 0 for

both the keys. And hence if they XOR them they get back 0, if 𝑧 = 1 then 𝑃0, 𝑃1 have different

keys, namely, Alice’s share would have been the 0 key and Bob's share would have been the 1

key. And hence their permutation bits would be complement of each other, namely 𝑧0 and 𝑧1 will

be complement of each other and if we XOR them we get back the value 1, so that will be the

reconstruction protocol.

(Refer Slide Time: 22:22)

So, we had seen the secret sharing protocol, we had seen the reconstruction protocol and now what

is left is the shared gate evaluation protocols. Because these are the 3 ingredients which we require

for any secret sharing based MPC protocol. If you want a secret sharing based MPC protocol for

evaluating a circuit, we need mechanisms to share the inputs, we need a mechanism to reconstruct

a shared input and we need a mechanism to evaluate gates over the shared inputs.

So, now we will see how we evaluate gates as per the Yao secret sharing interpretation or semantic.

And the steps of the gate evaluation will be different depending upon the type of gate. If the gate

which parties want to evaluate is a XOR gate and imagine that the inputs of this XOR gate are

already Yao shared, namely 𝑥 is Yao shared and 𝑦 is also Yao shared. Now, we want to ensure

that 𝑧 also becomes Yao shared as per the Yao’s 2 party secret sharing semantics.

So, if 𝑥 is secret shared then the share for Alice will be the 0 key and similarly the share for 𝑦 will

be the 0 key which are held by Alice. And then since we are using the free-XOR technique,

remember that we are using the free-XOR technique. The free-XOR technique does not require

the XOR gate to be garbled. So, the GC constructor or Alice in this case can simply set her share

for 𝑧 to be the XOR of the shares of 𝑥 and 𝑦.

Namely, she will set the share for 𝑧 to be 𝐾0
𝑥 ⊕ 𝐾0

𝑦
 held by Alice as per the Yao’s sharing

semantic. And in the same way, Bob will do the same, Bob will set his share for 𝑧 to be the XOR

of the shares for the 𝑥 value and 𝑦 value held by Bob. And now if you see closely here, by doing

so Bob is actually computing this value. Namely, it is [𝑧]𝑃0

𝑌 ⊕ 𝑅(𝑥 ⊕ 𝑦)

And that is precisely what we want to ensure as per year 2 party secret sharing semantic. As per

the Yao’s secret sharing 2 party semantic, Alice should have the 0 key associated with 𝑧 and that

is what she has. Because indeed the XOR of the 𝐾0
𝑥 and XOR of 𝐾0

𝑦
 is 𝐾0

𝑧 and we want Bob to

hold the key corresponding to 𝑧 depending upon what the value of 𝑧 is. If 𝑧 is 0, then Bob should

hold the 0 key associated with 𝑧, if 𝑧 = 1 then Bob should hold the key corresponding to 𝑧 = 1.

And the value of 𝑧 depends upon the actual values of 𝑥 and 𝑦 and that is what we are guaranteeing

here. So, evaluating the XOR gate is very simple here. And remember that to evaluate this XOR

gate, Alice or the GC constructor can compute it is share beforehand. What does that mean? So

even if the values of 𝑥 and 𝑦 are not determined, when the GC constructor is garbling the circuit

and the inputs of the circuit are not yet ready, Alice can do the following.

Alice, since she knows the 0 key associated with 𝑥, the 0 key associated with 𝑦, she can simply set

her share for the value 𝑧 irrespective of what is the value of 𝑧 is going to be at the runtime during

the execution of the protocol to be the XOR of the keys associated with the 𝑥 wire and 𝑦 wire. And

this task can be done by Alice beforehand itself. But Bob or the evaluator cannot compute its share

for the value 𝑧 beforehand. Because Bob's share for the value 𝑧 will be the shares of 𝑥 and 𝑦 held

by Bob which are determined at the runtime when the actual values of 𝑥 and 𝑦 are fixed.

(Refer Slide Time: 26:55)

Now, let us see how an AND gate can be evaluated. And why we are focusing on only XOR gate

and AND gate? Because we can always express any Boolean circuit or any function in terms of a

Boolean circuit consisting of only these 2 types of gates, namely the XOR gates and the AND

gates. So, we had already seen the process of evaluating the XOR gate, the AND gate can be

evaluated as follows.

So, again Alice has her shares for 𝑥 and 𝑦 which are the 0 keys associated with 𝑥 and 𝑦

respectively. And Bob, at the runtime will have his shares for the 𝑥 and 𝑦, which are the actual

keys corresponding to the actual values of 𝑥 and 𝑦. I also stressed that implicitly Alice also have

the other keys associated with 𝑥 and 𝑦, namely, the key corresponding to 𝑥 = 1 and the key

corresponding to 𝑦 = 1.

Now to make the value 𝑧 available in secret shared fashion as per the Yao secret sharing semantic,

what Alice will do is the following. She will garble this AND gate. And for garbling, this AND

gate, she will pick the 0 key associated with 𝑧 randomly, she will set the 1 key associated with z

𝐾1
𝑧 as per the free-XOR technique. And then she will prepare the 4 ciphertexts 𝑐1, 𝑐2, 𝑐3, 𝑐4, as per

the point and permute optimization using her shares of 𝑥 and 𝑦 and the implicit keys corresponding

to the 𝑥 wire and 𝑦 wire held by Alice.

So, remember for preparing the garbled circuit, we need all the 4 pairs of keys corresponding to

the gate input and Alice indeed have all those 4 pairs of keys, because Alice only picked all the

keys here. And depending upon the value of the permutation bits which are present in these keys,

𝑐1, 𝑐2, 𝑐3 and 𝑐4ill have different interpretations. So, it is not the case that 𝑐1 is an encryption

prepared using the 0 key for 𝑥 and 0 key for 𝑦, it depends upon the permutation bits.

And now Alice will send these 4 permuted ciphertext to Bob and Bob in order to get his share for

the value 𝑧, he will evaluate this garbled AND gate. So, that evaluation process I call as GB point

and permute eval, what exactly is that evaluation process? So, Bob will take his share for the 𝑥

wire, his share for the 𝑦 wire depending upon the permutation bits which are there in the 𝑥 share

and 𝑦 share. He will go and decrypt only the appropriate entry out of these 4 ciphertexts.

And as a result, he will get a key over the 𝑧 wire and that will be Bob's share. And by the correctness

of the point and permute technique, it will be indeed guaranteed that the key which Bob obtains

over the 𝑧 wire is actually the key which is supposed to hold as per the Yao’s 2 party sharing

semantics. And again, I stress here that the actions of Alice or the GC constructor she can do

beforehand itself before the circuit evaluation starts, before the values of 𝑥 and 𝑦 get fixed.

Because to compute her share for the value 𝑧, all that ingredients required are available with Alice

beforehand itself. Namely, she has all the 4 pairs of keys associated with the 𝑥 and 𝑦 wires, and

she has the global offset. So, she can always prepare the collection of these 4 ciphertexts and she

can keep her share for the 𝑧 wire as the 0 key. It is only the Bob's share which is determined at the

runtime during the circuit evaluation.

Because in order to determine his share for the 𝑧 wire, he has to evaluate the circuit and to evaluate

the circuit he needs the appropriate keys over the 𝑥 and the 𝑦 wires which are nothing but his share

of the value 𝑥 and value 𝑦 respectively. And you can see here that in this process, the privacy of

𝑥, 𝑦 and 𝑧 is preserved. Because that comes from the privacy of your Yao’s secret sharing protocol

based on the point and permute optimization.

(Refer Slide Time: 31:43)

So with that I end today's lecture. So, I followed this paper, a framework for efficient mixed

protocol secure 2 party computation to explain the sharing semantics of Yao’s 2 party secret

sharing. Thank you.

