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In this  class,  we will  sort  of  revise  and wrap up what  all  we have  been doing in  random

vibration. We will go through what all we did; some of them at least and then move to the

complete use of this results  of random vibrations for determining the tolerance of a human

being for the vibrations that exist in a car, maybe have you have already done a course on

ergonomics. 

(Refer Slide Time: 01:18)

I am sure that you know human factors, vibration and what can be tolerated and so on okay, so

we will not go into those details as I discovered in another course but we will understand this

random vibration a bit more and see how we actually calculate or what is that calculations that

we do in order that; we determine the levels that the human beings can tolerate. So, we will go

through this; the whole of these things in one go.

So, we were looking at what is called as an observation,  so in any; in a probability  sense,

observation is an experiment and the result of this observation is the outcome. In our case, we

are looking at the roughness of the road as we had seen. The set of all possible outcomes is

what we called as sample space, so a subset of the sample space is an event; we explained it

with simple example.



And then the function or a map from an event to the real line is what we call as a random

variable. So, there is an event, there is a mapping to the real line which is called as a random

variable and the map from this random variable to a probability measure can be done or we can

directly  give  this  probability  measure  to  the  event  okay. So,  this  in  a  nutshell  is;  are  the

definitions that we need to know.

(Refer Slide Time: 02:21)

We already saw that the random process is a family of random variables.

(Refer Slide Time: 02:31)

Remember that we did this in the case of the roughness of the road, okay as a random variable,

so we said that we can take a number of measurements, so this family of measurements okay is

now going to be used and is; we can call this as the ensemble. Remember that the random



variables have 2 indices, I put one in the bracket; in other words this R can vary from 1,2,3,4

and so on.

And s; is this distance, s is the distance and this indices 1 of s, then zeta 2 of s and so on are the

independent realizations as they are called okay, our sample functions okay, so then we have a

number of such sample functions maybe s and that we can call us zeta s and so on. So, all these

things; this roughness is form what we call as the ensemble of roughness values okay. Now,

there are 2 ways in which we are going to look at this.

We can look at it at a particular value of sn, of course, this sn can be or s can be replaced by

time okay and you can define the whole thing in terms of time. Note that, we can look at this at

s1 and look at another one s2 and so on. So, we have now at s1, a number of what are called as

random variables okay or the measurements that we do at s1 and we do similar measurements at

s2 and so on.
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Now, this one for example; I can say zeta1 or zeta2, zeta3 and so on has a probability density

function,  the  most  common amongst  them being a  Gaussian  or  a  normal  distribution.  The

Gaussian or the normal distribution function, all of you know and that is the Gaussian or the

normal distribution function.   Note that the difference between the probability density function

and the distribution function.

Probability  distribution  comes out  of  integration  of  this  probability  density  function  or  the

probability  density  function  comes  from  the  differentiation  of  the  probability  distribution



function.  So,  for  example  if  I  have  to  calculate  the  probability  of  this  zeta,  what  is  the

probability that zeta is between a and b? What I need to do is to just integrate this between the

limits a and b okay, p zeta gives the probability density function.

And if that is integrated, you get what is the probability that this variable is between a and b.

We are also interested in joint probability okay of 2 variables x1, x2, s1 s2 and so on. So, the

joint  probability  is  given  by  a  Gaussian  joint  normal  distribution  function  okay.  Joint

probability  between 2 variables  x and y is  that;  look at  that  closely, probability  that  x lies

between or x of k lies between x and x + delta x and y lies in a range okay.

(Refer Slide Time: 06:44)

So, in other words it is the second derivative or px, y can be written as tau/ dou i of dou p /dou

x or dou square P/ dou x dou y, where p is the probability  distribution function.  The joint

probability can be written as shown here and rho is what is called as correlation we will see that

in a minute. We talk about; when we talk about this ensemble, okay we talk about what are

called as expectations okay; expectations.

So, in other words, it is the ensemble average, is written in terms of expectation. Note that from

a sheer  definition  point  of  view, there  is  a  difference  between the  time  averaging and the

averaging across or averaging of the whole in sample, okay. Time averaging simply means that

I am averaging across here, okay. So, expected value or in other words, ensemble gives us what

is called as the ensemble mean or ensemble average.



And that is given by okay, this we had seen in a couple of classes back that it is given by mean

is equal to the value zeta1 into multiplied by the probability into dz okay. Now, remember that

we had seen, so the key factor here is this equation, which gives you the expected value of say;

of function y is given by the expected value of y okay it is a function of x or y = g of s; a

function of s is given by g of alpha, p of alpha into d alpha.

So now, I can replace g of alpha; g of alpha by any function okay, so I can replace that for

example, if I have; I am looking at the expected value of the; you know what is called as the

variance  then  we can  determine;  we can  determine  the  expected  value  of  the  variance  by

substituting that difference zeta s1 - the mean okay, that can be substituted; that squared can be

substituted instead of g and calculate what is called as the variance.
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So, expected value of what is in this bracket okay, that square of this term okay is called as the

variance. You can operate the integral as you know it and substitute it, expand it and that is the

right hand side is what you get. Let us now, so the 2 important parameters; the first 2 important

parameters are what are called as the mean and the variance okay. They belong to one set say,

they calculated at s1 or calculated at s2 and so on.

So, when I say it is mean or the expected value, it is across this line; vertical line okay. So, if I

talk about horizontal line though its distance I would talk about time averages okay; loosely

talking it is a time average. So, average can be taken along the vertical line or the average can

be taken along the horizontal line, so those are the 2 things. The first is respect to one variable

s1.



You can then look at how 2 guys, who are separated by a distance say, tau or time okay, how

they are related?   There are 2 things or 2 definitions which now become or characterizes this

connection between the 2 random, I should not call 2 random variable, but random variable at

s1 and s2 okay because we have to be very careful in using this terms, this whole thing is one

random process, please note that this whole thing is one random process.

The road is characterized as one random process okay. So, I can say in that way, it is not this is

not a different random process, it  belongs to the same random process and so they are the

random variable. For example, if I look at the acceleration levels in the seat okay then I can call

that as another random process. As we go along in these roads what is the acceleration level at

the seat if I calculate okay that is called as another; you know random process.

So, I have another set of these values there as well, then I will combine both, we will see that a

bit  later.  So,  here  we  are  looking  at  the  same  random  process,  so  autocorrelation  is  the

connection between those measurements that are done at s1 and the measurements that are done

at s2, so that is the expected value okay. It is an expected value of zeta1,   zeta2, so you can see

what is that; that definition is there okay; zeta1, zeta2.

We are now replacing zeta1, zeta2 instead of g and so, the probability now, we see that there is

a  joint  probability  of  zeta1,  zeta2  multiplied  by  okay;  dzeta1,  dzeta2.  So,  the  same thing;

“Professor - student conversation starts” Yeah! That is the; sorry that the second one is auto

covariance or there is a small; I mean there is a mistake there, it is actually auto; then we have

the what is called as variance okay, auto covariance.

So, that is subtracting the mean and I think there is a small mistake in that as it is not cross

correlation okay it is again the auto covariance between the 2, so the second line that is the one

okay. “Professor - student conversation ends.” Now, we can actually calculate what is called

as the; so, what is the difference between the 2? The difference between this the same as the

difference between a mean and the variance.

One talks about how much the variable is connected okay, the other talks about how much the

distance away from the mean okay, how is that connected. So, both of them you look at one

without mean and one with mean. Usually, in most of these processes we would make sure that



the mean value that is by adjusting the measurement that is being taken, we can make the mean

value to be 0, in which case both these cases; both these things would become 0.

Or in the other words, that m would become 0 okay. So, that is the; so the second one is actually

the auto covariance, so that not cross correlation; auto covariance and auto correlation and auto

covariance  is  given  by  these  2  equations  okay. We define  what  is  called  as  a  correlation

coefficient? What is the connection? You know, why are we doing this? What is the relationship

between the 2?
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Once we finish this; once we finish a few more definition, we will look at what this actually

means okay. So, I define another one, then I just normalize it, normalize the variance okay, this

auto covariance by means of the mean and I get what is called as the correlation coefficient. We

will come back to this correlation coefficient in a minute, now we let us look at; we will now

narrow down this process.

(Refer Slide Time: 15:26)



Now, if it  so happens now, looks at this, I am defining s1 and s2. If it  so happens that the

statistics what we are defining okay does not depend on the particular value of s1 and s2 but

depends only on; say for example, the difference in distance or in other words time okay does

not and depends only on the time okay then we call this process as a stationary process. So, the

stationary process in fact, can be classified into weakly stationary processes.

Or we can call them as strongly stationary okay, so but we will not go into that detail because

we will then it depends upon whether all of them; all the statistical measures or in other words,

all  the moments;  higher order moments all  of them they are the same okay or they do not

depend upon where I put this my line does not depend upon where I put the line but depends

only upon the separating distance or separating time okay, all the higher order moments okay. 

That is very strongly stationary; if the first 2 moments depend upon this time tau then we call

this as a weakly stationary process okay. We will just go to ergodic, then we will understand

this whole thing you know what we are talking about. Please note again I am looking at it like

this, the vertical segment okay, so it is independent of time in other words, that vertical segment

if I take and determine and do all my expected values and so on.

Or I take this vertical segment, they are the same or I take 2 other vertical segments and then

separated by that same distance tau, then all the statistical parameters that I calculate they are

the same okay. So, this  distance does not  come into picture and that  is  what  we call  as  a

stationary process okay. As far as, we are concerned we are one interested in the first 2 and so



that is the first definition of stationary process but a more interesting process because of the

limitations and other things.

It is called as an ergodic process, it is a special case of stationary process where one sample

represents  the  whole  of  the  random process,  so  here  I  have  to  go  to  a  different  road  and

determine this okay. So, one sample determines the whole of this process, so I take a sample, if

that  sample  determines  all  the  statistics  then  we  call  this  okay  as  ergodic  process.  More

importantly, the ergodic process, we will see how it is.

Whatever time averaging I do along this; the regular time averaging I do along this that reduces

to the ensemble or expected values, so the time averaging gives me the complete statistical

parameter  of the whole of the random process.  “Professor -  student conversation starts”

Yeah! We will come to that. So, one of the conditions of course is that the length of this sample

we say that the length of the sample has to be big. 
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We will come to that in a minute, what should be the length of the sample. “Professor - student

conversation ends”. So, we call this we already said that if the mean and the covariance you

know, function  or  independent  of  time and we also defined what  is  called  as this  strongly

stationary process.
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So, we said that if the ensemble averages are determined from the time averages of a single

process we said that is ergodic. Let us write down all the equations corresponding to that, what

am i doing? I am only okay defining; you can also write this as an expected value, it does not

matter but when you write this in terms of time the calculation becomes quite simple. So, the

first is the mean definition, look at that x tends to infinity okay.

So, I integrate over a very large length, it is very important that the lengths are large okay, so

that is the mean across that is horizontal side, so the mean variance and the third how look at;

how it reduces, so we will we look at this from a; they probably; the density function will be

Gaussian and the third is what we called as, what is that? Autocorrelation okay; autocorrelation

and the 4th is mean square value and lastly we look at auto covariance okay.

So, what essentially has happened is that, d zeta1, d zeta2 which we had put earlier okay that is

now we have replaced it okay that time averaging and so it becomes very simple. Now, it is

possible to get the estimate of all these things we will not cover that in this course, what are

called as estimators? We can do that estimators by looking at discrete values that are taken okay

and then summing up the discrete values, we will not look at what are called estimators for

these things okay.

We will leave this as a continuous expression and maybe we will cover that in one of the later

courses. So, these are a bunch of definitions which I am sure you understand if there is any

question, we will take it okay. Now, what does these things mean, you know what is the; what is

autocorrelation mean? What does the auto covariance mean and so on? It simply tells you how



far is a correlation you know as the term indicates how far the signal that is happening at s1,

okay; the road roughness is.

How far does it affect something that happens at s2, in other words what is the memory of a

signal. This is not only for a roughness but it is also for any signal. So, it looks at; what is the

memory of the signal,  if  this  is  white  noise which means that  say;  we will  talk  about  the

spectrum or power spectrum density which is distributed throughout. In other words, it is purely

a signal which is such that even the next guys are; in other words delta T okay.

If this happens at time T what happens at T + delta T, he was also is not related to T, in other

words a white noise is where; this is stick standing at tau = 0, okay you can, if you go and

substitute tau = 0 in the third expression, you would notice that is nothing but that is nothing but

if I substitute tau = 0 in the third expression this is nothing but the 4th one R of zeta is 0, okay.
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It is nothing but the mean square value of this variable okay which means that they will just be

a stick and it would not be connected at all. If I mean; of course this varies depending upon

what are the frequency contents and so on okay. What is actually an Ergodicity? It is a very big

question, it cannot be covered in this course, there are what are called a ergodic theorem and so

on.

We will just follow a very simple method to just understand, what this Ergodicity is, so what we

said is that we have a time or a space average, let us stick to that word time because that is what

is used in most text books okay. What we are saying is that the ensemble average that is the



expected value; that is the expected value is equal to the time average. How does this come

about? Okay, let us look at this carefully.

Now, the expected value of the ensemble or the ensemble average given by that expected value

okay, we will  substitute  that  okay;  expected  value  of  you know in  terms  of  what  we had

measured  here,  what  substituted  here  in  this  expression,  switch  the  expectation,  after  all

expectation is the integration,  you can shift it okay and ultimately you would see that okay

when I substitute that the ensemble average okay reduces to what is called as the line average or

the time average, right.
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So, what is important to understand is that, for a stationary process; the ergodic process is also a

stationary process, so this very; I mean this expression is very simple expression, you can see

that the simple expression where I just took the expected value inside shows that the ensemble

average can be calculated in terms of the time average or in terms of the distance s. Now, so

these are the 5 things so, which are important to us that is what we had defined okay?

Let us define what is called as a 4ier transform we know that already what 4ier transform is.

Note that by 1/2pi can be interchanged it can be root of that and so on okay depending upon the

textbook, so it is only a scaling quantity. So, let us look at the 2 values okay the; what is called

as the 4ier transform and the inverse 4ier transform okay. These are well known; this comes

from your 4ier series okay you know you know that already.
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We will spend some more time in one of the later courses and all these things. So, we define

what is called as the power spectral density. Ultimately, we come to a quantity which is called

power  spectral;  this  is  the  6th,  right;  6th  important  quantity  look  at  mean,  variance,  auto

correlation, auto covariance, correlation coefficient which is nothing but normalized by means

of the variance, a square of the variance is this okay.

And then we come to what is called as the power spectral density. Power spectral density is

defined as the 4ier transform of the autocorrelation function. So, in other words what is that we

are trying to do, we are moving from the time domain to the frequency domain okay, we are

moving from the time domain to the frequency domain, the autocorrelation function is in terms

of time domain and now we are taking the 4ier transform of it.

So, we have now moved to the frequency domain, right. So, these are the 2 4ier transform on

the inverse 4ier transform or do an inverse 4ier transform of the power spectral density we get

what is called as the autocorrelation function okay. Substitute tau in that second expression you

would get the meaning of what is power spectral  density. In order to understand what this

power spectral  density  is;  what  is  this  power or spectral  density  or  sometimes  called okay

spectrum as it is loosely called okay all this and what does this really mean?

The expressions, which I had written there; they are very straightforward okay they are just that

the mean square value okay which is the autocorrelation at tau = 0 is what is defined in the third

line that is this one we had seen this before. If I now substitute tau = 0 here it becomes that the



mean square value is nothing but s omega d omega. So, in other words the mean square value

or the power okay is now determined in terms of the power spectral density.

(Refer Slide Time: 28:44)

Now, let us understand this more carefully. Let us for a moment take that second expression for

granted. 

(Refer Slide Time: 28:53)

Let us say that I have a process okay where I send in an input and I get an output okay, let us

say  that  the  frequency response  function  of  this  process  is  H of  j  omega  and the  impulse

response of this is say, H of t, right. Let us consider that this process as a band pass filter okay

with a narrow band. In other words, this is a filter which has the frequency response function

such a fashion that it allows only a small band of frequency to pass through, going to filter off

the rest of them.
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So, if I now; in other words, let us say that centred about around omega0 okay usually practice

to do both, so it is going to allow only a small narrow band okay. Now, this pass band; this is

what is passed okay, this narrow band of frequency is what is passed okay, which I would also

call this pass band, if you do not understand this filter okay, let us now calculate the expected

value of the square of this output, okay.

The expected value of the square of the output, in other words mean square value of y, usually

the square of this; any these quantities, the electrical engineers are fond to call them as power, it

comes from I squared R, so usually the square of a quantity is called as the power okay. So, the

mean square value which we saw in the last slide is now, in other words this slide we saw it

there as the last equation.

Now, since this narrow band is only passed, this band pass is only a narrow band is passed

okay, let us say that is delta omega, that integral from minus infinity to plus infinity is now

reduced okay; reduced because the rest of the places it is zero, so it becomes this is the integral

limits now, okay. So, that pass band is the power spectral density multiplied by d omega okay

and you can ask the band becomes smaller, you can understand that the power that is passed

okay in a very small range is nothing but is given by the power spectral density.

Sometimes, you know some of the softwares, which are used in mechanical engineering, they

call that sy omega*delta omega as auto power okay, so power spectral density because the word

density is used because when you multiply by delta mega, so it gives you the power, so that is



why the density term is added. Many of the MVH softwares okay, you would see that they use

the term auto power in; what they simply means is that they multiplied this with a band of delta

omega okay.

So, that multiplication in other words, what is inside the integral is what they call as auto power

okay. So, in other words the spectral density or the spectrum gives you the energy content of the

signal and we are now looking at it  in the frequency domain, the energy content at various

frequencies is what is determined okay by the spectrum okay. One of the key factors though we

will not be deriving it completely in this course, take that is granted is the relationship between

what comes out here and what goes in.

The relationship is given by the first equation, in other words the power spectral density is a

very key equation; the power spectral  density of an output okay, output determined from a

linear time invariant system okay which is characterized by a frequency response function okay

that is given by the square of the magnitude of this function, multiplied by the input power

spectral density.

So, in other words, if I have a vehicle say for example we looked at a quarter car model and we

had looked at various frequency response functions at various places now, if I want to say that I

want to find out what is the power spectral density say at the automobile what we call as the

sprung mass, say the base of the car okay, the sprung mass; the floor of the car okay. If I want to

find out that we already know what the frequency response function is, we had written that

okay.

Now,  that  frequency  response  function,  the  magnitude  square  of  the  frequency  response

function, if I now take; note that it  can be complex, so we are looking at the magnitude of

frequency response function, square of that multiplied by the input power spectral density gives

me the output power spectral density. So, if I want to find out at the seat I put one more okay

what is the frequency response function between the road and the seat I write it.
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And then I can find out what is the power spectral density at the seat location okay that brings

us to a very important thing or the properties of these functions. The auto correlation function

by the shear definition; remember that there was a xt and xt – tau, so from its sheer definition

okay is such that it is a even function or in other words, auto correlation function of –tau = the

function of tau okay from the shear definition, so that is the first one.

The second equation again comes from the definition go back and look at the definition okay,

you would notice that in e power –j omega t, substitute - omega okay, by I mean by omega by –

omega, so you would notice that the power spectral density in other words, what is this, this is

nothing  but  the  complex  conjugate,  complex  conjugate  okay  becomes  the  power  spectral

density of omega.
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In other words, the power spectral density is a real valued function okay, power spectral density

is a real valued function and that is what is okay important here that the output power spectral

density and the input power spectral density both of them are related by the power spectral

density which is a real valued function okay. We can also look at cross correlation functions;

these are the cross correlation functions okay between 2 different random processes.

This is very important to understand okay what, we are looking at this whole thing is a random

process. Though, we call this as one random variable and another random variable they belong

to the same okay that is why we use the term here when we calculate it is auto okay, so auto is

what we used because it belongs to the same random processes. So, we can connect 2 different

okay, the cross correlation between them.
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What  happens  when you give  an  input  here?  How is  this  correlated  with  another  random

process which is at a time? So, in other words if I have another random process see; I have a

random process and I have 2 random processes okay, the other random processes I will let me

call that as eta, it can be anything, you know whatever it can be maybe what happens at the seat

location okay or something else.

Now, the cross correlation is the connection; the statistical connection between say for example;

that road input at s1, okay to what happens the statistical connection between that and at s1+say

tau okay because of the fact that the distances do not now matter because we are looking at

something else then, so s has to be okay though we define the road in terms of distance, it is

proper that we come back to time rather than stick to only distances.



So, please note that though I used it interchangeably, note that it is always better to look at that

in terms of time. So, we define what is called as a cross correlation, cross covariance and cross

spectral density okay, so cross spectral density. Note the difference between okay s; the power

spectral density eta eta to s zeta eta, okay. So, note that difference, the difference is at the same

we are looking at when we look at the YY, you know that is at this place what happens?

Now, there is a delay factor okay, a tau which connects the cross correlation factors okay. Again

through the definition, we can see that the cross spectral density is a complex valued function

obviously, it is a complex valued function, we also have to look at the phase, because we are

looking at 2 different points okay and this is the frequency domain, so we look at the phase as

well.
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And the cross correlation function is either odd or even and again go back and put that in the

definition, you would see that is the expression you would see. One of the quantities see; we

saw the cross correlation coefficient okay, the correlation coefficient rather sorry; correlation

coefficient, one of the quantities that is in the time domain okay and one of the quantities of

interest to us in the frequency domain a corresponding in the quantity in the frequency domain

is called as the coherence, it is called as the coherence.
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So, all of you know what is a correlation coefficient okay, the correlation coefficient all of you

know varies from -1 to +1 okay, rho is between -1 to +1, that is because we had normalized it

by means of that variance okay, so it is simple probability, so which means that if there is a

perfect correlation then you know that you can plot that the 2 variables and maybe all the points

will draw will fall in a straight line.

And if there is a negative correlation you would also know that okay, when one is positive the

other  is  negative  and  so  on  okay.  So,  the  negative  correlation  means  that  one  something

increases, the other factor decreases and so on. So, that is the correlation which we defined

okay in the time domain. What is the correlation in the frequency domain? You should be able

to now imagine time and frequency in a very very similar fashion, the x axis is time. Now, the x

axis becomes frequency, it does not matter now, x axis just becomes frequency okay.

So, frequency domain where we look at this whole thing in terms of that f, after we do the 4ier

transform. In fact, today there are techniques that are available in order to look at say fatigue

life  in  frequency domain,  so you do that  in  time domain  or  you can  do that  in  frequency

domain. So, coherence which is extensively used to look at, how I mean; look at the input and

the output connection in many of the experiments.

Say, for example you would do some experiments in the vehicle dynamics lab in which case

you would look at coherence all the time and look at how whether output what you measure is

pure noise or whether it is correlated English word, correlated with respect to the input okay



that you look at it in the frequency domain. If the coherence is not near one then okay suppose,

it is say 0.9 to 1, then you know that there is a good coherence between what you gave.
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Or in other words, what they are measuring is due to what you gave as an input. If there is no

coherence then you would see that what you are measuring is noise and has nothing to do with

what you have given as an input. So, coherence is an important quantity especially you would

be using that in the experimental work. One of the quantities of interest is what is called as the

mean square value of the acceleration.

So, why are we doing all these things? Okay ultimately, I measure or I calculate, what is the

power spectral density at the seat? Okay, we know that. Now, we have defined quantities, we

know the connection between power spectral density at the road, power spectral density at the

seat, we know that it is everything is done, now okay. Why am i doing this, what is it that I am

doing this, I mean; what is it that I am going to get out of it? 

One of the simplest thing you would notice is that the acceleration levels okay what you; say

for example, feel when you do a drilling or something where you are subjected to accelerations

are very important input of vibration to our body okay. In other words, our tolerance levels

depend upon the mean square value of the acceleration okay. Now, what is the mean square

value of acceleration?

Remember; Y squared the same thing okay mean square value of this now instead of Y we say

that it is the mean square value of the acceleration, we know that this is nothing but the integral



of the power spectral density, this is exactly what we did in this problem, so power spectral

density in a band omega 1 to Omega 2 okay. In other words, we have a central frequency like

this and we take this band from omega 1 to Omega 2 okay.

These band omega 1 and omega 2, it is called as an 1/3 octave band, it is called as an 1 /3, there

are 1/6 octave band and so on, 1 /3 octave band, if the upper frequency or upper bound, this

point is given by root 2; 1/3 of I mean power of root 2 or the lower frequency is given by as you

see divided by third, the cube root of 2 and so on. When you calculate that that becomes 0.89 to

1.12 omega0.

Octave has a very important parameter and we will see that okay again, next goes on noise; the

noise and vibrations.  So, the RMS acceleration is now calculated okay based on the power

spectral density, this RMS acceleration is related to our ability to withstand vibrations okay.

Now, we have various; so I can calculate for various frequencies what is the RMS acceleration

from that equation okay. 
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So,  in  other  words  I  can  have  a  plot  of  frequency  versus  the;  1  minute,  versus  the  RMS

acceleration. Yeah! “Professor - student conversation starts” No, No it does not matter, I am

looking at  it  anywhere power spectral  density, so you can take that  power spectral,  it  is  a

general expression, so we are talking about power spectral density at the seat. So s, okay; No,

No, this expression here; this expression here is now substituted in terms of the seat okay.
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If you want to call this as eta eta, you call this s eta eta, okay, so suppose this is the road input

okay and this is the seat, why is the seat output and then if I calculate the power spectral density

at the seat and call  that as say; s eta eta or s eta whatever it is okay, which is nothing but

remember that H squared value right, so I am talking about this value, so take it to the seat okay

that is what goes inside that integral okay.

And take; one minute, let me explain this process and take 1 omega okay and then put that as a

band and calculate 1/3 octave band at that value, so I get one value for a mid frequency of

omega  by  integrating  that  value,  that  is  the  RMS acceleration  okay  for  a  frequency;  that

frequency.  So,  like  that  I  will  have  RMS  acceleration  at  various  frequencies  acceleration;

accleration with function of frequency; yes root mean square value of the seat position.

But note that I am calculating or I am measuring, what I am measuring as an output okay that

power spectral  density of the acceleration say; for example if I measure the power spectral

density of this output okay is what I measure is s, so if I can measure anything I can do, I can

measure  whatever  I  want.  Suppose,  I  put  an  accelerometer  usually  what  I  do is  to  put  an

accelerometer and measure it.

And so what I get out is the power spectral  density of this acceleration measured from the

accelerometer and that is what I am going to use okay. It does not matter; the simplest and the

best method is to put only an accelerometer and measure it okay. Now, that is the; so this is

called as the RMS acceleration, right.  “Professor - student conversation ends”. So, usually

you can put an accelerometer at the seat, you can put an accelerometer at the back okay.



And you can put an accelerometer at the floor and so on. Now, a lot of tests have been done

from the point of view of human tolerance human vibration tolerance okay and it has been

found that there is a difference about you know the tolerance level of a human being whether

we are subjected to say a seat vertical acceleration or horizontal acceleration also.   I am sure

you have been; this has been done to you.

And  we  have  talked  about  a  very  famous  standard  2631  okay  in  your  earlier  course  on

ergonomics because that is what essentially the whole of ergonomics is all about that standard

2631, so huge standard, we do not have time here to cover it but nevertheless once I know how

to calculate that RMS acceleration you have what are called as weightage factors and these

weighted factors are applied which are different.
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Whether it is a vertical vibration; whether it is a horizontal vibration and so on. So, with these

weightage factors, we will understand what the tolerable limit is whether we are going to be

comfortable or not okay. We will talk about that in the next class. The last of the topics that we

need to cover which we will do in the next ten minutes is what is called as the Road roughness.

Of course, you had already seen what power spectral density is.

You already saw that power spectral density is very important input to this whole problem and

that road roughness is actually the input, remember that many of the equations you can either

solve it in the frequency domain or in time domain okay but nevertheless if I have to give the



road as an input as a power spectral density, it is in the spatial domain in the words; when you

look at when you go and measure what is called as Road profile okay.

This would be in terms of distance x and the actual power spectral density okay from which you

can get the correlation; auto correlation and so on, is actually measured in terms of time, so we

have to have a relationship between the spatial frequency and the temporal frequency. In other

words,  when the velocity  of the vehicle  is  v, obviously the frequency with which they the

vehicle gets excited would be a function of v.

So, in other words, if omega is the; what is called as; we will call this as a spatial frequency

which means that this is expressed in terms of radians per meter okay and for the problems that

you do, you require the same thing in terms of say; radians per second, so I have to convert

radians per meter which is road characteristics that has to be converted into characteristics as an

input into the system into the vehicle.

And that obviously comes from v the velocity of the vehicle, which is expressed in meters per

seconds. So, obviously omega which is the radians per second is given by capital omega, spatial

frequency multiplied by omega, okay. So, this becomes omega is radians per meter per second,

so this  becomes  radians  per  second okay. So,  this  is  the  first  thing  that  we need to  know

understand when we convert the spatial frequency or spatial power spectral density into a power

spectral density which goes as an input.

I do not want to call this as temporal and confuse you, just that as an input when it power

spectral density when it goes inside all our calculations, then it should be in terms of the; the

omega should be in terms of what is called as the temporal frequency that is meters per second

okay. Now, so this is a very good nice way of distinguishing between the road and the vehicle.

So, that brings us to the topic of how do you specify a road roughness.
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In other words, how do you characterize the road? There are a number of ways in which you

can write down the equation for the power spectral density of the road okay.   Let me call that

as the power spectral density of the road. The power spectral density of the road is written in

terms of capital Omega which is means that it is written in terms of radians per meter is given

by a characteristic power spectral density phi0 multiplied by omega0 / omega whole power w. 

The  W actually  indicates  the  waviness  and  w  varies  from  okay  of  course,  you  have  the

wavelength to be 2pi/omega obviously, you know that and w actually varies from 1.75 to 2.25

practice is to put w=2, omega0 specifies a characterized in a frequency a standardized spatial

frequency  okay, it  is  a  standardized  spatial  frequency, we will  see  in  the  next;  you  know

equation how we are going to characterize the standardized special frequency.

This is one of the first equations that were written, the equations were further modified later

okay and there is an ISO specified power spectral density of the road, so you want calculate the

power  spectral  density  for  in  terms  of  the  temporal  frequencies  meters  sorry;  radians  per

second, we will do small manipulation to that. Now, the ISO came up with a small modification

to this.

And they said that if you plot it in a log log plot then there are actually 2 different; you know

slopes in a log log plot of the frequency versus the power spectral density. So, they gave this

actually, this is a log good to plot it in the log log plot because of the type of equation you have

so, the equation that you get is something like this and for omega greater than omega0, the

equation is equal to the same similar type.
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Only thing is that omega to the power w2, so in other words there are 2 slopes okay and they

are characterized by 2 equations or 2 w; w1 and w2. Now, the good roads and the bad roads are

characterized by these w1 and w2, so if you really look at that.
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For example; for a very good road these standards are something like this, for a very good road

the range of this w1, w2 is that is less than 8, which means at 0 to 8, the geometric mean is 4

and this is called A class road and for a B class road which is a good road, this range is 8 to 32

okay and that is the finite value; the finite value okay and then C which is an average road, the

values vary from 32 to 128 and so on okay.



There is a poor road which is 128 to 552; 128 to sorry; 512 and so on. The usual practice is to

have w1 to be 2 and w2 to be 1.5. So, in other words, the lower bound for an average road if

you want to do an analysis, the lower bound for an average road, you replace this phi0/32, okay

that gives you the lower bound okay, of course omega0 is 2pi okay and phi0 is 32 and for a

upper bound, you replace that phi0/128 okay and put that here right.
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So, you can have for an average road, you cannot; I can give you one figure okay it varies from

32* 1/2 pi omega whole power 2 and then again the same thing whole power 1.5, when omega0

changes. This is a very standard; ISO standard but people in recent times have issues with this;

the issue is that when omega, the frequency okay, if you really look at a graph; the graph would

be something like that with respect to omega versus this phi.

There have been issues with this equation; the issue with this equation is that when that Omega;

the Omega value when it goes as it tends towards 0, the power spectral density now shoots up

okay and goes to infinity the variance reaches infinity at omega =0, when omega =0. So, that

gives us a very unrealistic value, when you reach omega okay, when you move omega to be

closer to 0.

In other words, this would start this part the error is very large okay because of that fact that as

omega tends to o okay, this one tends to infinity. So, in order to avoid this in fact, just one

statement is very important that essentially what is that you do you? You put down an equation,

so if you want to like for example, our road if you really want to model your vehicle in this road

then you have to do a profile measurement.



And then you have to fit a curve okay which is given by an equation which you are going to

write down; which you have written down. So, it is very important that you identify a road with

an equation  of  this  form or  an  equation  which  we are  going to  put  down because  of  this

difficulty okay. There are a number of issues for example; this gives what is called white noise

but the roads are coloured noise where when there are a number of parameters.

We are not going to cover all that in this course but there will be a course on NVH, if any of

you want to take it,  maybe next semester this, after  this 2 semesters from ends, this  is the

January session where the first part of the course will cover a lot more on random vibration as

well as on signal processing and there we will be covering more detailed analysis of the road as

well as how you know what is white noise, what is coloured noise, what is shape filter.
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What the shape filter which converts white noise into coloured noise all those things will be

covered there. So, the only thing I am going to write down before i close this topic that there

has been changes in the way the power spectral density is written because of this difficulty that

omega makes this omega, omega tends to 0, the power spectral density goes to infinity, so in

order to avoid that they have been other; this kind of unrealistic behaviour is avoided by using

other types of equations.

Or that is one type of equation, the other type of equation that is written and so on, so these are

other  types  of  equation  this  which  gives  you  a  more  realistic  picture  of  the  actual  road

measurements especially, as you move towards the omega to be small, you give you get much



better in the picture of this and of course, when you want to convert it into omega, substituting

for v and so on.

So, you would notice that we can write down v phi0*omega0 say for example, if it w seems to

be 2, you can write down that is the equation. There are lot more issues in in random vibration

because of lack of time in this being the last class, I do not want to go into further details,

people who are interested in some more details can slightly more information again look at (())

(01:06:24).

Others who want more details on shape filter, white noise, coloured noise can look at the paper

by (()) (01:06:39) in the journal Sadhana okay. We will stop here and this course will end with

this and we will continue that in the next course okay. Thank you. 


