
Digital Signal Processing and its Applications 

Professor Vikram M. Gadre 

Department of Electrical Engineering 

Indian Institute of Technology, Bombay 

Lecture No. 10 A 

Introduction to DTFT, Inverse DTFT and Convergence of DTFT 

 

A warm welcome to the 10th lecture on the subject of Digital Signal Processing and its 

Applications. We continue today with our discussion of the discrete time Fourier transform. 

We have just introduced the idea and introduced the term in the previous lecture, but we have 

promised that we would look at it in more detail in the lecture today and we do so. Let us 

recapitulate a few ideas that we have begun with in the previous lecture.  
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We have said that if we take an arbitrary sequence x[n] not necessarily the impulse response of 

a Linear Shift-Invariant system any sequence then its dot product or inner product with the 

sequence 𝑒𝑗𝜔𝑛where 𝜔as you know is the normalized angular frequency. Its dot product or 

inner product with the sequence 𝑒𝑗𝜔𝑛was given a name of course if this converged. 

So, when you take a dot product here unlike in the case of the finite dimensional space where 

a dot product of two vectors is bound to have a convergent value or finite value. Unlike the 

case of finite dimensional spaces in infinite dimensional spaces we do not have this guarantee. 

So we cannot rest assured that this dot product will converge, because there is an infinite 

summation involved, but whenever it converges we call it the Discrete Time Fourier Transform 

of the sequence.  
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So, it’s dot product is called the Discrete Time Fourier Transform abbreviated by DTFT of x[n] 

and in fact we have given a name to the Discrete Time Fourier Transform of the impulse 

response. We have called it the frequency response of the system.  
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The DTFT of the impulse response of an LSI system if it converges,the DTFT of the impulse 

response of an LSI system, if it converges is called the frequency response of that system and 

in fact we have used h[n] normally to denote the impulse response and H(𝜔) to denote the 

frequency response. Now, we employ a combination of these ideas. So, we understand that 

X(𝜔) is like the projection of the sequence x[n] on the sequence 𝑒𝑗𝜔𝑛and therefore we would 

agree that you could possibly represent or reconstruct x[n] from its projections as you can do 

in the case of vectors.  
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𝜔 is “unique” so to speak only over any interval of 2𝜋, you know why this is the case you see 

2𝜋  denotes the sampling frequency on the normalized scale. So the maximum frequency 

component that could have been present in the original signal is not more than half the sampling 

frequency if you have taken care to avoid aliasing and if you have not taken care anyway it is 

indistinguishable now.  

So, you need to do orderly with the frequencies from -𝜋 to 𝜋 if you talk about the original 

phasors or in fact if you look at the Discrete Time Fourier Transform it is very easy to see or it 

is going to be periodic with the period 2𝜋. Let us take a minute to prove that, that is another 

way of saying this.  
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You see the DTFT of x[n] is usually defined as  

∑

+∞

𝑛=−∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛 = 𝑋(𝜔) 
 

and we use capital X (𝜔) to denote this. Let us consider X(𝜔 + 2𝜋). 
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Clearly X(𝜔 + 2𝜋)is obviously going to be  

∑

+∞

𝑛=−∞

𝑥[𝑛]𝑒−𝑗(𝜔+2𝜋)𝑛 = ∑

+∞

𝑛=−∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛 𝑒−𝑗2𝜋𝑛 
 

𝑒−𝑗2𝜋𝑛 is identically 1 and therefore this is the same as X(𝜔). 
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So, X(𝜔 + 2𝜋) is identically equal to X(𝜔) for all 𝜔and of course in particular for 𝜔between 

minus −𝜋 and +𝜋. Now this is of course the mathematical way of demonstrating this, but the 

physical interpretation is that uniqueness is only over the region from 0 frequency to half the 



sampling frequency and for every rotating phasor with frequency 𝜔 you have a counter rotating 

phasor with frequency -𝜔 they come together to form a sine wave.  

So, you have uniqueness only over the region -𝜋 to 𝜋beyond that there is periodicity. So, there 

is uniqueness only over any contiguous interval of 2𝜋 That is what we are saying. Contiguous 

means an unbroken interval of 2𝜋. Now, of course this is true for any Discrete Time Fourier 

Transform and therefore we expect that we should be able to reconstruct x[n] from its 

components which are X(𝜔) over this unique interval. In particular you could take the unique 

interval from -𝜋 to 𝜋.  
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So, what are we saying in mathematical language? We are saying that we expect that x[n] 

should get reconstructed by taking these components. How do you reconstruct the vector from 

its components? You multiply the components by unit vectors in the direction of each of those 

components and add up these. So, if you have a three dimensional vector and if its components 

in the x, y and z directions are 1, 2 and 4. Then how do we construct the three dimensional 

vector? 1 time the unit vector in the x direction plus 2 times a unit vector in the y direction plus 

4 times the unit vector in the z direction. So you multiply each component by unit vector in the 

direction of that component and add overall such components. Now, here there is a slight 

difference here the components𝜔run from -𝜋 to 𝜋 and these components are not discrete. 

They are continuous; there is a continuum of components. Now, you have a continuum of 

components you cannot add what should you do? You should integrate and of course we ask 



for a unit vector so I do not know whether 𝑒𝑗𝜔𝑛 is a unit vector or not. So I have to make a 

provision that if it is not a unit vector I should allow for a constant to divide or multiply that 

vector essentially constant multiplying that vector to make it a unit vector.  

Hopefully the constant can be independent of 𝜔. So, what I am saying is I am multiplying the 

components by the so called unit vector and the unit vector is 𝑒𝑗𝜔𝑛 amd some constant 𝜅0 
let 

us call it and integrate over 𝜔for 𝜔 going from -𝜋 to 𝜋. I expect that this should be true. So, I 

already have a physical interpretation now I need to prove this mathematically.  

The physical interpretation is I expect that I should be able to reconstruct the sequence here 

infinite dimensional vector by taking the product of components multiplied by the so called 

unit vectors and integrate it over all such components over the region of uniqueness of 𝜔, but 

now we need to prove this mathematically. So, let us look at this expression and let us in fact 

forget about the constant. 
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Let us consider summation or rather let us just consider ∫
𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔. We will worry 

about 𝜅0 
afterwards. Now 𝑋(𝜔) = ∑+∞

𝑛=−∞ 𝑥[𝑛]𝑒−𝑗𝜔𝑛. I am intentionally using a different 

variable of summation here to distinguish it from the index n and I substitute that. 
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So, I have integral ∫
𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔 = ∫

𝜋

−𝜋
∑+∞

𝑛=−∞ 𝑥[𝑘]𝑒−𝑗𝜔𝑘 𝑒𝑗𝜔𝑛𝑑𝜔 . Now here I 

have a finite integral and of course I am assured that this infinite summation has converged. 

So, I can bring the finite integral in and make it act only on 𝜔. So, you notice it is only this and 

this that depend on 𝜔 and I can make the integral act on them and bring the summation 

outwards. I must remark here that it is of course an important technical point when you can 

make such interchanges of integrals particularly when the integrals or summation are infinite 

in length, but we shall not dwell on those technicalities here. Let us take it that in this context 

it is acceptable and one of the justifications is that we have assured ourselves of the 

convergence of X(𝜔) which is a good factor for it.  
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So, this is equal to ∑+∞
𝑛=−∞ 𝑥[𝑘] ∫

𝜋

−𝜋
𝑒𝑗𝜔(𝑛−𝑘)𝑑𝜔 and it is this that we need to study. What 

is this? That is very easy to evaluate. In fact we shall evaluate it mathematically, but let us 

evaluate it with some intuition here. What are we asking here? We are asking for the integral 

of a rotating number.  

Note here see now for a moment you have to reverse the role of 𝜔and n. N - k now you see you 

are integrating with respect to 𝜔. So, it is 𝜔which is changing here not n and k. When 𝜔goes 

from -𝜋 to 𝜋suppose n - k is equal to 1 now we are going through one complete cycle. If n - k 

is equal to 2 we are going through two complete cycles. Now, of course n-k can be 2 or - 2.  

It depends on whether you are going clockwise or anticlockwise, but in any case we are always 

completing n - k cycles. When n - k is not equal to 0, but when n - k is equal to 0 what are you 

doing? You have 𝑒𝑗𝜔0 which is 1 so you are essentially integrating 1 from -𝜋 to 𝜋which simply 

becomes 2𝜋.  

So n - k is not 0 the integral must go down to 0 because you are starting from a point and 

coming back to the same point. In fact each time you are going through for each particular 

value in the cycle we are going for the negative value as well. So we expect that this integral 

is going to vanish when n - k is not equal to 0, but when n - k is equal to 0, but integral is going 

to be equal to 2𝜋 now it is very easy to show this mathematically.  
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In fact it is very easy to see that 
∫

𝜋

−𝜋
𝑒𝑗𝜔(𝑛−𝑘)𝑑𝜔 =

𝑒𝑗𝜋(𝑛−𝑘)−𝑒−𝑗𝜋(𝑛−𝑘)

𝑗(𝑛−𝑘)
  

when n - k is not 

equal to 0. 
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So for n - k ≠ 0 or n ≠ k that integral vanishes.  
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On the contrary when n = k or n - k = 0, ∫
𝜋

−𝜋
𝑒𝑗𝜔(𝑛−𝑘)𝑑𝜔 = 2𝜋and  therefore all that we need 

to do is to go back to that expression that we have that summation.  
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You see what we have said now is that in this summation for any given n all these integrals for 

k not equal to n vanish and they leave only the integral when k is equal to n and for k equal to 

n you get 2𝜋 here and therefore we are saying that in fact we have answered two questions at 

once. We have suddenly answered what is 𝜅0 as well.  
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So, we have said ∫
𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔 = 2𝜋𝑥[𝑛]  and now it is very obvious that 𝑥[𝑛] =

1

2𝜋
∫

𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔 . Now obviously we have this mathematically we already made an 

interpretation in the beginning of the class in terms of vectors it is a very interesting correlation 

that we see. 

And in fact as I said we have already answered the question what is 𝜅0, must be 1
2𝜋

 we did not 

need to work very hard to arrive at 𝜅0. Now this is called the Inverse Discrete Time Fourier 

Transform.  
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So, we say the Inverse Discrete Time Fourier Transform of 𝑋(𝜔) which is periodic with period 

2𝜋is 1
2𝜋

∫
𝜋

−𝜋
𝑋(𝜔)𝑒𝑗𝜔𝑛𝑑𝜔 of course we assume again that this should converge, but the good 

thing is that if |𝑋(𝜔)| finite and if 𝑋(𝜔) is continuous then we expect that convergence will 

happen there should not be too much of trouble. 

It is only in pathological cases that we would have trouble. So if you have given a Discrete 

Time Fourier Transform then going back to the sequence is possibly not too difficult I mean 

the ability to go back does not seem to be too much of a problem, but the other way is a problem. 

A sequence may not have a Discrete Time Fourier Transform. In fact let me immediately give 

you an example of a sequence which does not have a Discrete Time Fourier Transform.  
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Let us take the sequence x[n] = 2
𝑛  for n ≥ 0 and 0 for n < 0. Obviously this summation, 

∑+∞
𝑛=−∞ 𝑥[𝑘]𝑒−𝑗𝜔𝑘 = ∑∞

𝑘=0 (2𝑒−𝑗𝜔𝑘). Now this is a geometric progression with common 

ratio 2𝑒−𝑗𝜔 and obviously this common ratio has a magnitude > 1. 

 



(Refer Slide Time: 22:20) 

 

(Refer Slide Time: 22:55) 

 

So the geometric progression does not converge and therefore this x[n] does not have a Discrete 

Time Fourier Transform. So you do not have to go very far to see examples of frequency that 

do not have a Discrete Time Fourier Transform. So of course we need to confine ourselves if 

we want to deal with the Discrete Time Fourier Transform we need to confine ourselves to 

sequences that do for the moment at least.  

Now, this also illustrates an example of an impulse response which would not correspond to a 

frequency response. Of course, it is obvious because this particular impulse response also 



would correspond to an unstable system. Impulse response is not absolutely summable and this 

LSI system if it had this impulse response would be unstable.  

 


