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But can I do better is the question, that is the challenge. So challenge, can one sample in this 

case at less than 10 kilohertz and still reconstruct the signal in this particular case. And of 

course, if you answer the question for this particular case, you will come up with a more 

general answer as well.  

I mean, pay attention to the question. In general, if all the frequencies from 0 to 5 kilohertz 

are occupied, then I have no choice at all. I need to sample at more than 10 kilohertz. But 

here I know the signal occupies the band only between 3 kilohertz and 5 kilohertz. So, 

actually it is really occupying a band of 2 kilohertz on the frequency axis. 

Do I really need to sample at more than 10 kilohertz with this knowledge? Or can I do with 

less? And if I can do with less? What are those smaller sampling frequencies that I can use? 

And if I do use such smaller sampling frequencies, how will I reconstruct the original signal 

from these sampled versions? This is the question before you as a challenge.  

I told you I love throwing challenges to the class. And you will find that this happens in 

subsequent lectures as well. But anyway, let us not get carried away too far by this challenge. 

Let us now come down to business if you want to call it that. We have agreed that we 



understand what it takes to sample a signal adequately. And we also agreed that if you do not 

sample a signal adequately, then you are going to run into the problem of ALIASING.  

So, we want to avoid ALIASING, we have sampled the signal at least, in fact more than 

twice the maximum frequency component present in the original signal. And we are agreeing 

to reconstruct the original signal by cutting off all frequencies beyond the highest frequency 

component in the original signal. 

And how do you do that? Put what is called a low pass filter, which cuts off after FM on the 

frequency axis. Incidentally, we are going to do filters in great detail, discrete-time filters, we 

will talk more about filters. But for the moment, we understand what a filter does. A filter 

retains some part of the frequency axis on a signal and throws out the rest. That is how we 

understand the filter for the moment.  

In other words, it modifies the amplitudes and phases of the Sine waves present in any signal 

that is given to it in a certain way. What I mean by that is, it does not matter what amplitudes 

and phases, the signal that is given to it has, what matters is how it modifies them. 

So, whatever be the amplitudes and phases of the Sinewave up to frequency FM if you put a 

low pass filter with a cut off of FM, it retains all the amplitudes and phases up to FM as they 

are and beyond the frequency FM, it makes all the amplitude 0. This is how we should 

understand the low pass filter.  

Similarly, if you had a high pass filter with the cut-off of FM, it would mean that after the 

frequency FM, this filter would retain the amplitudes and phases as they are and before FM it 

would make all the amplitude 0. This is irrespective of what amplitudes and phases they are 

at after FM or before FM, it does the same thing to all signals irrespective of what those 

amplitudes and phases are. 

Now, this is the kind of system that we are going to try and design in this course. It is very 

easy to describe the system. In fact, it is so simple, in a few sentences I have told you what a 

filter is. But you will realize as you go along the course, that you can never do this exactly. 

We will understand slowly, why?  

You can only approximately do this. And the whole art or the science of discrete-time signal 

processing is how well you can do this, how closely you can do this thing that which you 

ideally want to do. You remember in the first lecture, I had talked about the problem of 

separation of male and female voices through an audio recording. Now, if you speak the 



language of frequency axis, what would that mean? That would mean that you have a cut-off 

point. 

In fact, let me give you numbers. Typically, speech waveforms, for example, do not go 

beyond 4 kilohertz on the frequency axis, audio waveforms tell them go beyond 15 kilohertz, 

and definitely not beyond 20 kilohertz. So, for an audio signal, if you sample at more than 20 

kilohertz, you are doing a good job.  

For speech signals, if you sample at more than twice of 4, which is 8 kilohertz, you are doing 

a good job. Now, there again, between 0 and 4, you may reasonably assume that frequencies 

above 2 kilohertz would have a predominance of female component. And frequencies below 

2 kilohertz may have a predominance of male component. 

So, if you want to separate the male and female components, you may wish to break up the 

signal into its bands between 0 and 2 kilohertz, on one side, and between 2 kilohertz and 4 

kilohertz on the other side. So, if you pose the problem in that language, then you may ask, 

can I exactly put the cut-off at 2 kilohertz or can I exactly break the signal between 0 and 2 

kilohertz on one side and exactly between 2 kilohertz and 4 kilohertz on the other?  

And unfortunately, the answer is no. You can never do this exactly. You can only do it 

approximately. And if you ask me to summarize, why we need a whole semester to design 

filters, this is essentially the reason, that though the task is easy to specify, it is not so easy to 

do. 

What are the hurdles that we encounter when performing this task? The hurdles are first to 

describe a general class of systems which will do this, do what? Do exactly, the same thing to 

all signals, irrespective of what original amplitudes and phases they had, at different 

frequencies.  

So, the system should not be partial, it should not look at how much of male component or 

female component there is in the audio waveform and then decide what it will do. It should 

be impartial, between 0 and 2, I am going to keep between 2 and 4 I am going to cut or 

between 2 and 4 I am going to keep between 0 and 2 I am going to cut, it should be impartial. 

Achieving this impartiality means that the system need to have several properties. And we are 

now going to understand what those properties are. In fact, we will see soon that. 
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To get this impartial behaviour, let me write it down, to get this so-called impartial behaviour 

on the frequency axis, we need linearity and shift-invariance. In many discussions on systems 

and signals, we encounter these terms, we encounter the term linearity, we encounter the term 

shift-invariance.  

And we have possibly had a lot of discussions in our past curriculum or in our past degrees 

on linearity, on shift-invariance and their consequences. It is useful at this point to reflect, if 

necessary, with the benefit of hindsight, why we started talking about linearity and shift-

invariance in the first place? And the answer is this. 

See the whole picture of what you want to do, you want to get this impartial system which 

does the same thing on the frequency access to all the signals that are given to it. And to get 

this impartial nature, you need a linear shift-invariance system. I am stating this at the 

moment, but in the subsequent lectures, we are going to prove this.  

Now, this is true, whether you are talking about continuous time, or the independent variable 

being continuous, or the independent variable being discrete. Perhaps some of us may have 

been exposed to this idea when we talked about continuous independent variable systems. 

Now, we are going to describe and then prove these results in the context of discrete 

independent variable systems. But before that, let us put down what we mean by a discrete 

system. 
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So, next question that we need to answer is, what is a discrete system? A discrete system has 

a sampled input and produces a sampled output. And if we accept the notation that we have 

introduced some time ago, we shall use X[N], you remember, when I started with the 

discussion of a Sinusoid being sampled, I said that if you take samples at all multiples of T, 

then you could essentially substitute t by NT. And you could call X [ NT] as X[N]. So, we 

will use that notation in future. We have a sampled input, we have a discrete system, which 

gives you a sampled output. And we will use the standard notation, y[n]to denote the sampled 

output here. 

Now, you have the sampled input, we will agree now. Henceforth, that the sampled input has 

been sampled according to the Nyquist principle, or the Nyquist Shannon which take a 

theorem, you have made sure that you have ascertained, that you have taken samples at more 

than twice the maximum frequency component present in the original signal. That means you 

know how to reconstruct the original signal from its samples, just put it through a low pass 

filter, which cuts off at the maximum frequency component present in the original signal. 

Now, of course, you could put that X[N] into a discrete system, do what you want with the 

samples, and then the output can also be put through the same low pass filter. So, if you were 

to take an analog system, which had the original continuous-time signal as the input with 

maximum frequency component FM if you were to do some operations on the frequency axis 

with that analog signal, and if you were to look at the output. Now if you sample the input 

and sample the output at the same instance, you would get what you are calling X [N] and 

y[n] in this case. 



That is what I mean by prevalence. You have sampled the input. You have done something 

with those samples, you have generated an output. The input X [N] has generated the output 

y[n], X [N] are essentially samples of the input at the Nth instance, I mean, N refers to the 

instant number N equal to 0 means the point T equal to 0, N equal to 1 means the point T 

equal to, I mean t equal to T, N equal to 2 means the point t equal to 2 times T and you can do 

this N equal to  -1 means the point t equal to -T, and so on, so forth. 

So, N is essentially the sample instant to the sample number, you have the sampling instance 

for the input and you have the sampling instance for the output, you have a relation between 

them, there is a discrete system, which creates that relationship. And we are assuming that the 

discrete system does exactly what the original analog system would want to do.  

That you take again the example of male and female voice separation. If you have this up to 

4-kilohertz signal, which is a conglomerate of several male voices and several female voices, 

you would have an analog separator which would take the frequencies from 0 to 2 kilohertz 

and put it on one side, and take the frequencies from 2 kilohertz to 4 kilohertz and put it on 

the other and you would have a corresponding discrete-time system. 

Which does exactly the same thing that means, it would sample the original audio signal or 

speech signal, it would put essentially output a stream of samples and if you reconstructed the 

output signal, as you did, as you would reconstruct the input signal by the same process that I 

described, then you would get after reconstruction of the output the male voices in the female 

voices in principle in different baskets. (())(16:30) So, then for discrete systems, this is what a 

discrete system is, it takes a discrete input gives you a discrete output. Now, remember a 

discrete system. And let me note this down before we conclude the lecture today. 
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A discrete system is a relationship between all the samples x[n], for all integer n I mean, and 

all samples x[n] in general. So, you must not think of it as a point-by-point relationship in 

general. y[10] could be related to x[10], x [9], x [8], x [7] all the way, and also x [11], x [12], 

x of in principle, yes, I mean, that could happen. Or maybe at least y [10] might be related to 

a few samples, x[10], 9, 8, and maybe 11, 12.  

In fact, there could be a relation between a group of samples of y and a group of samples of x. 

So, you must remember, a system is a relation between streams of samples, 2 full streams of 

samples, that makes a system so much richer in nature. And now we need to start studying 

systems by going step by step. We cannot deal with this entire reality all at once. So, we shall 

do that, starting from the next onwards. Thank you. 


