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So you see, what we need to do is to put down some advantages of FIR filter design by

window. First symmetry or asymmetry can be maintained and therefore, linear phase or

pseudo linear phase can therefore be maintained as well. Let me spend a minute explaining

this once again. It is a very important idea.
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What you are saying is that, if you have a response h[n], which is real and

ℎ[𝑛] =  ± ℎ[− 𝑛]

I am sorry, there is either even symmetry or odd symmetry then, the corresponding frequency

response is of the form summation n going from to , now here, I am assuming odd− 𝑁 + 𝑁

length, the same argument can be extended to even length h[n] and we can club, we𝑒−𝑗⍵𝑛

will take the plus and minus cases separately.
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So, we can club to take . So we can rewrite this asℎ[𝑛] = ℎ[− 𝑛]

,𝐻(𝑤) =
𝑛 = 1

𝑁

∑ ℎ[𝑛] · 𝑒−𝑗⍵𝑛 + ℎ[− 𝑛]· 𝑒𝑗⍵𝑛 + ℎ[0]

by clubbing the plus and minus terms together and these are equal.
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And therefore we can rewrite this as,

= ℎ[0] =
𝑛 = 1

𝑁

∑ ℎ[𝑛] · 2𝑐𝑜𝑠⍵𝑛

So, therefore when you have a real and even impulse response, as we expect the frequency

response is also real and even and this is called the pseudo magnitude. It is called a pseudo

magnitude because if you now delay this impulse response by n samples to make the FIR

filter causal, the only change that takes place in the frequency response is a factor of 𝑒−𝑗⍵

times the delay.

And that only contributes a linear phase. So, you have a pseudo magnitude multiplied by a

linear phase. Now, the only catch is that it is a pseudo magnitude. This is not quite the

magnitude. In other words, it could be positive or negative, wherever it is negative; you are

also putting in additional phase of π (pi).

So, you can call this resultant causal FIR filter, that is the FIR filter which has been obtained

by delaying the spike capital n samples as a pseudo linear phase filter. Pseudo in the sense

that, it is linear phase to the extent of a, to a phase factor of pi; linear phase plus minus, I

mean plus 0 or +π. It is called pseudo linear phase and a similar, in fact, this I leave to you as

an exercise



(Refer Slide Time: 05:31)

Exercise: Reason out, what happens when . Here you would find the pseudoℎ[𝑛] =− ℎ[− 𝑛]

magnitude has phase . Essentially, what we call the pseudo magnitude in this case± π/2

would have an additional factor of either +j or -j and then if you delay it again, you have the

linear phase term, but then here are the pseudo, so called pseudo magnitude would have a

phase of either +90° or -90°.

So, this is what we mean by FIR filters, allowing us linear phase. When you maintain

symmetry or anti symmetry in the response, then you are guaranteed a pseudo magnitude or

pseudo linear phase, pseudo magnitude plus linear phase or pseudo linear phase. So, it is the

best, the closest to linear phase that we can get. That is what it means.
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Now, this is one of the advantages. The second advantage is that FIR filters are

unconditionally stable, impulse responses is absolutely summable, even in the presence of

numerical inaccuracies. So you see if the coefficients are real, when we realize the

coefficients in finite precision that is likely to be inaccuracy in the representation of the

coefficients. But even in the presence of those inaccuracies, the stability of the filter is

unaffected.

Now, this is not the case with IIR filters. If the poles of IIR filter happened to be close to the

unit circle and if there are numerical inaccuracies in realizing the coefficients, there is a

possibility that the pose may migrate outside the unit circle in the presence of numerical

inaccuracies and then we have trouble instability.

Then it does not remain a filter at all. Because then you are not even, you are not sure, if the

now, I would still say it remains maybe it is not correct to say that it does not remain a filter,

it remains a filter, but then you have this trouble that you are not sure whether a bounded

input can result in a bounded output or not.

Incidentally, IIR filters can never give you linear phase. In fact, I poses a challenge to you

shows that IIR filters, which are causal can never give you a linear phase. I believe I posed

this challenge before but I am just repeating the challenge again. I also give you a hint, the

heat lies in showing that causality and symmetric cannot go together; causality, symmetry and

IIR cannot all go together.

Anyway, you see we have seen this universal principle of engineering and nothing comes for

free. This is also true here. So FIR filters seem to have everything that we would want them



to; in fact, one more thing that they have is that there is at least a design approach for FIR

filters which are non-piecewise constant in the ideal response.

So we know how to, for example, realize an approximation to the discrete time differentiator

by using FIR filter; simplifying the ideal impulse response and truncate it or find the ideal

impulse response and then window it. So we know I mean at least one way to do it, we do not

know how well that approach would work.

But experience tells us that it at least works well we have an approach. We do not have one

for IIR features at all. There is no way to design an IIR or there is no easy way to design an

IIR discreetly differentiate, I mean not, definitely not based on the bilinear transform, because

a bilinear transform is going to distort the frequency axis.

So, it cannot be used for non-piecewise constant responses. You see the, if now when you

reflect on the bilinear transform with the benefit of hindsight, you realize that the reason why

the bilinear transform worked even though it made a nonlinear distortion of the frequency

axis is that the bilinear transform in frequency was a monotonically increasing transfer. So as

capital omega increase small omega also increased all the way from minus to plus infinity.

So, as capital omega the analog frequency went from minus infinity to plus infinity, the

discrete time frequency went from -π to π and therefore, pieces of the axis contiguous pieces

of the frequency axis map to corresponding similarly ordered contiguous pieces of the

discrete frequency axis, pieces went to pieces and therefore, the bilinear transform in spite of

the non-linearity of the frequency transformation was improbable for piecewise constant filter

design.

But it would not be applicable for designing a discrete time differentiator. Because there,

even if you happen to design a very good analog band limited differentiator, when you

transform it with the bilinear transform, the frequency response will be completely distorted

from linear and therefore, we do not have a good, right now we do not have, we have not

talked about any meaningful way, design, discrete differentiators or similar such responses

which are not piecewise constant in the IIR context. That is another reason again, why IIR,

why FIR filters are attractive. So then, where is the, where is the price that we paying? The

price and that is what we will now write.
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Price for all these advantages; the same specifications when realized with FIR filter designs,

demand more resources. So, you would want to verify this when you carry out the design that

you have been assigned. For the same magnitude specifications, when we realize it using the

FIR filter, you would find typically that the FIR filter is much longer; it requires many more

additions and derails.

So nothing comes for free. Anyway, so it is all about the relative behaviour of IIR and FIR

filters and now we have been talking about resources all this while, we must now actually

come down to the issue of realizing filters. Now, there is one little thing before I go to

realization that I would like to mention in the context of FIR filter design. You see, one might

wonder why at all one should use the rectangular window when you have so many other

windows to choose from?

Of course one argument is that the transition bandwidth is kind of the minimum. So transition

bandwidth is the issue, then the rectangular window is a good choice. But more importantly,

there is a fundamental other reason why the rectangular window is attractive; you see, when

we talk about pass band and stop band tolerance all this while what we have been talking

about is, what is called the L∞ tolerance or the maxim deviation.
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So what I am saying is, when you put down the specs for a low pass filter, for example, we

said something like this, we said there is a passband tolerance and there is stop band tolerance

meaning that the magnitude in the passband must be within this shaded area and the

magnitude in the stop band must be within the shaded area. However, we are saying nothing

at all about the extent to which or how or the frequency with which this should deviate from

the ideal in the pass band and the stop band.

So it is quite possible that in the pass band, it is only at one frequency that it really goes all

the way up to the tolerance everywhere else, it might be far away from the tolerance, it might

be close to the ideal. So this is called the L∞ notion of error. Now, this L∞ is a strange word at

the moment, but it will become clearer when we come to another notion of error, called the L2

notion of error. The L2 notion would be the mean squared error or the sum squared error and

it will be very clear where the number 2 comes from.
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You see that the sum squared error, L2 error; as you might want to call it is essentially, the

desired frequency response minus the actual frequency response. The absolute value this is

taken and integrated from -π to π and this is where the 2 comes from. The 2 comes from the

square. So, when we talk about L2 error, what we are really talking about is the magnitude

squared of the error has seen all over the pass band.

You see now also the actually, if you really want to understand the number, the why it is

called L2, one should define the L2 error to be the square root of this integral of the error

square mod error squared. But it does not matter. I mean, you know, if the squared error is a

maximum, so is the square root of it, the square root is a monotonically increasing function,

that is not such an issue.

But if you do take the square root, then it does explain the infinity concept. So if you were to

take this instead of 2, if you had 3 there, you would call it the L3 error. If you had 1 there that

means if you took just the absolute value and integrate, we call the L1 error. So you could

now conceive of the L∞ error. That means you raise it to the power infinity notionally or raise

it to a larger, larger power, but then do not forget to take one by that power outside.

So raise it to the corresponding root also. So if you are raising it to, if you take while

calculating the L10 error, for example, you raise the mod error to the part 10. But then you

take a th power outside. Now you can visualize this being taken to infinity and then1/10

what really happens, is that as you take it to infinity, it is only the maximum which survives

all the others are suppressed. That is why we call it… Yes, there is a question.



Student: (())(18:29)

Professor: So the question is, would you consider the error only over the pass band or

everywhere? The answer is everywhere. You know, you have a desired response all over.

Now, you may argue what happens in the transition band? Well, that is an important point, the

transition band actually does not have an, have a desired response specified. Now, again, it is

interesting, it does not matter.

So here, you could, for example, take the middle of the transition band as a point of

separation and you could take the response to be one up to the middle and then zero after the

middle in the case of a low pass filter, for example and use that as a desired response. You

can also if you wish, take only the pass band and the stop band and put down error here. That

will also be a meaningful L2 error. But the error is calculated all over the band from 0 to π.

Now, yes, there is a question?

Student: (())(19:40)

Professor: So the question is, how do you take the desired ⍵? The desired omega, the desired

response is 1 in the pass band and 0 in the store band. Anyway, the point is the rectangular

window actually minimizes the L2 error as well. In addition to the transition band being

optimized with the rectangular window, if one is talking, you see the transition band is

optimized, but the L∞ error is the worst for the rectangular window.

However, the L2 error is the minimum. So, the rectangular window is not without advantages.

So, you see that also tells us that L2 error minimization is not the same as L∞ error

minimization and that is not too difficult to understand. You see, it is quite possible that at

one place as I said, you may have the response deviating very far from the ideal, but it may

be pretty close to the ideal many other places and therefore, the L2 error could be low.

On average the squared error could be low, but because at one place it deviates very far, the

L∞ error is significant. So, that is about L∞ and L2 error. What I also tried to illustrate here is

that there is just not one notion of error, though we have taken the L∞ error all the time now

discussion without having explicitly realized all this while.


