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Impedance Matching using Shunt Stub, Double Stub and Quarter Wave Transformer 

We have seen the impedance matching using a series stub. Let us now consider another type of 

stub matching, the impedance matching with a shunt stub. We first derive the analytical 

expressions, and then we will solve an example problem of shunt stub matching using Smith chart. 

(Refer Slide Time: 00:54) 

The distance of the stub location 𝑑 is so chosen that 𝑌𝑖𝑛 = 𝑌0 + 𝑗B 

The stub length 𝑙 is then so chosen for a short or open stub that input susceptance of the stub is 

−𝑗B. This results in matching. 

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑑

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑑
 

𝑌𝑖𝑛 = 𝐺 + 𝑗𝐵 

We equate  𝑅𝑒(𝑌𝑖𝑛) = G to 𝑌0 and find solution for 𝑑. 

 

 

So, we start with an impedance ZL. Now, this ZL is to be matched to a transmission line having 

characteristic impedance Z0 using a shunt stub. So, first of all, what we do, we find out a distance 



d from the load impedance ZL where if we look we find out Yin at this point becomes equal to Y0 

that means 1 by Z0 and it will have a susceptance component jB. 

Now, so the distance of the stub location d is so chosen that Yin becomes equal Y0 plus jB. Now, 

once we do that next, we put a stub of length l, and it may be an open or a short stub and the length 

l is selected in such a way that if we look from this point into the stub we get minus jB. So the stub 

length l is chosen for a short or open stub that input susceptance of the stub is minus jB, and this 

plus jB minus jB will get canceled, and that will result in matching.  

So, we know that Zin is given by Z0 ZL plus jZ naught tan Beta d divided by Z0 plus jZl tan Beta d 

and with this, we develop the analytical solution. So we can write Yin equal to 1 by Zin and which 

will be G plus jB. We have already stated that we choose this d in such a way that this G becomes 

equal to Y0. That means we equate the real part of Yin equal to G to Y0 and find the solution for d. 
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Let us now derive the closed form expressions 

Let 

𝑍𝐿 =
1

𝑌𝐿
= 𝑅𝐿 + 𝑗𝑋𝐿 

 

Then, once we have the computed value of d with this we find out B and then the stub length l is 

found for a short or open stub to provide minus jB.   
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Similar to series stub matching, let 𝑡 = tan𝛽𝑑 

𝑍𝑖𝑛 = 𝑍0
𝑍𝐿 + 𝑗𝑍0 tan𝛽𝑑

𝑍0 + 𝑗𝑍𝐿 tan𝛽𝑑
 

= 𝑍0
(𝑅𝐿 + 𝑗𝑋𝐿) + 𝑗𝑍0𝑡

𝑍0 + 𝑗(𝑅𝐿 + 𝑗𝑋𝐿)𝑡
 

𝑍𝑖𝑛 = 𝑍0
𝑅𝐿 + 𝑗(𝑋𝐿 + 𝑍0𝑡)

(𝑍0 − 𝑋𝐿𝑡) + 𝑗𝑅𝐿𝑡
 

𝑌𝑖𝑛 = 𝐺 + 𝑗𝐵 =
1

𝑍𝑖𝑛
 

𝐺 =
𝑅𝐿(1 + 𝑡2)

𝑅𝐿
2 + (𝑋𝐿 + 𝑍0𝑡)2

 

𝐵 =
𝑅𝐿
2 𝑡 − (𝑍0 − 𝑡𝑋𝐿)(𝑋𝐿 + 𝑡𝑍0)

𝑍0( 𝑅𝐿
2 + (𝑋𝐿 + 𝑍0𝑡)2)

 

 

 

So, as in the case of the series stub, matching let us replace this tan Beta d by t. Then this equation 

Zin can be put in this form tan Beta d replaced with t, and then we can group the real and imaginary 

terms, and we get this resulting expression. Zin is equal to Z0 RL plus J XL plus Z0 t divided by Z0 

minus XLt plus jRLt. Now Yin is equal to G plus jB is equal to 1 by Zin. So, from this expression 

we can calculate the expressions for G and B. So that we can do by multiplying the numerator and 



denominator by the conjugate of this term, then this will become actually, once we multiply this 

conjugate it will become real, and then we group again the real and imaginary part and in that way 

we can find the expression for G and B. 

(Refer Slide Time: 4:58) 

From  𝐺 =
𝑅𝐿(1+𝑡

2)

𝑅𝐿
2 +(𝑋𝐿+𝑍0𝑡)2

     

𝑍0(𝑅𝐿 − 𝑍0)𝑡
2 − 2𝑋𝐿𝑍0𝑡 + (𝑅𝐿𝑍0 − 𝑅𝐿

2 − 𝑋𝐿
2 ) = 0 

If 𝑅𝐿 = 𝑍0,      𝑡 = −𝑋𝐿 (2𝑍0)⁄   

else 

𝑡 =
𝑋𝐿 ±√𝑅𝐿[(𝑍0 − 𝑅𝐿)2 + 𝑋𝐿

2 ] 𝑍0⁄

(𝑅𝐿 − 𝑍0)
 

 

 

Now, we start with the expression for G, and once we equate it to Y0 then we can solve for t by 

forming this quadratic equation. So, here you put G is equal to Y0 equal to 1 by Z0 and then 

rearrange the terms, then we will get this quadratic equation. Now, here you note that if RL is equal 

to Z0 then this term becomes zero that means the real part of the load impedance if it is same as 

the characteristic impedance of the line it is to be matched then we get a very simple solution for t 

which is – XL by 2 Z0 because this RL Z0 will get canceled with RL square so we will be essentially 

having minus XLsquare divided by 2XL Z0 and this will give t equal to minus XL by 2 Z0 but if RL 



is not equal to Z0 then t is equal to XL plus minus root RL Z0 minus RL square plus XL square whole 

thing divided by Z0 and in the denominator we have RL minus Z0. 
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We get two solutions for 𝑑 which are given by  

𝑑

𝜆
= {

1

2𝜋
tan−1 𝑡           𝑡 ≥ 0

1

2𝜋
(𝜋 + tan−1 𝑡) 𝑡 < 0

 

With the values of 𝑡 calculated, we calculate the values of 𝐵. Necessary stub reactance 𝐵𝑆 = −𝐵.  

If 𝑙𝑜 and 𝑙𝑠 respectively denote the lengths for the open and short circuited stubs, then  

𝑙𝑜

𝜆
=

1

2𝜋
tan−1

𝐵𝑆

𝑌0
= −

1

2𝜋
tan−1

𝐵

𝑌0
   and   

𝑙𝑠

𝜆
= −

1

2𝜋
tan−1

𝑌0

𝐵𝑆
=

1

2𝜋
tan−1

𝑌0

𝐵
 

If any of the lengths comes out to be negative, 𝜆 2⁄  is added. 

 

 

So, since the equation in t is a quadratic equation, we will get two values of t, two solutions for t 

and correspondingly we will get two solutions for d. We write d by Lambda is equal to 1 by 2pi 

tan inverse t, when t is greater than zero, this comes directly from t is equal to tan Beta d and Beta 

is 2 pi by Lambda so when t is less than zero to get a positive length d we solve 1 by 2 pi, pi plus 

tan inverse t to be equal to d by Lambda and once the values of t are calculated we can calculate 

the value of B by substituting the value of t in the expression for B. Since we are having two 



solutions for t, we will also get two solutions for B and the necessary stub susceptance Bs is equal 

to minus B. 

Let us denote the length of the open and short-circuited stubs by Lo and Ls then we can find out 

Lo by Lambda is equal to 1 by 2 pi tan inverse Bs by Y0 and this can be written equal to minus 1 

by 2pi tan inverse B by Y0 and similarly for the open-circuited stub Ls by Lambda is equal to minus 

1 by 2 pi tan inverse Y0 by Bs which can be written as 1 by 2pi tan inverse Y0 by B. So, we have 

found out the solution for d, the location of the stub from the load impedance and also we have 

found out the expression for the length of the stub and depending upon whether an open circuit at 

stub or a short-circuited stub is being used, we can calculate their lengths.It may be noted that if 

this length while computing comes out to be negative then we add Lambda by 2. 
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Let us consider an example where 𝑍𝐿 = 100 + 𝑗60 𝛺 is to be matched to a 50 𝛺 line. By applying 

the analytical solutions we get: 

𝑡 = 3.4091 = 𝑡1 and 𝑡 = −1.0091 = 𝑡2. We get two solutions for 𝑑 

𝑑1
𝜆
=

1

2𝜋
tan−1 𝑡1 = 0.2046 

𝑑2
𝜆
=

1

2𝜋
(𝜋 + tan−1 𝑡2) = 0.3743 

We get two solutions for 𝐵 as 𝐵1 = 0.0221and 𝐵2 = −0.0221 

Let us now find the lengths of the open circuited stubs to complete the solution 

𝑙𝑜1

𝜆
=

1

2𝜋
tan−1

𝐵1

𝑌0
=0.3671   and      

𝑙𝑜2

𝜆
= 0.5 +

1

2𝜋
tan−1

𝐵2

𝑌0
=0.1329 

 



 

Now we take the example of an impedance matching using shunt stub, So let the load impedance 

to be matched is given by ZL is equal to 100 plus j60 Ohm, and this is to be matched to a 50 Ohm 

line. So by applying the analytical solutions, we get a value of t to be equal to 3.4091 which we 

call as t1 and another value of t is Minus 1.0091which we call t2 and we get two solutions for d, 

in fact, d1 by Lambda comes out to be 0.2046 and d2 by Lambda this is 0.3743.  

Similarly, we get two solutions for B, B1 is 0.0221 and B2 is Minus 0.0221. Now with these values, 

we can now calculate the length of the open-circuited stub so two solutions are again possible. So 

Lo1 by Lambda is 0.3671 and this one if you consider other value of B2 this tan inverse will come 

out to be negative so we have to add Lambda by 2, here you note that Lo2 by Lambda we are 

calculating so this becomes 0.5 plus 1 by 2pi tan inverse B2 by Y naught which comes out to be 

0.1329. Now, these are the two locations of the stubs, and the corresponding open-circuited stub 

length can be used to complete the design.  
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From Smith Chart 

𝑑1
𝜆
= (0.5 − 0.46) + 0.164 = 0.204 

𝑑2
𝜆
= (0.5 − 0.46) + 0.336 = 0.376 

𝑙𝑜1/𝜆 = 0.132 

𝑙𝑜2/𝜆 = 0.368 

𝑍𝐿 = 100 + 𝑗60 

Analytical 

𝑡1 =   3.4091 

𝑡2 =  − 1.0091 

𝑑1/𝜆 =   0.20459 

𝑑2/𝜆 =   0.37428 

𝑙𝑜1/𝜆 =   0.36710 

𝑙𝑜2/𝜆 =   0.13290 

 

 

Next what we do, we verify our analytical design by comparing with Smith chart solution. So, our 

load impedance ZL is 100 plus j60 which can be shown by the normalized impedance of 2 plus j12 



in the Smith chart. Next, we draw the constant VSWR circle. Pass this line through the center of 

the Smith chart, and then we find out YL, the admittance, normalized admittance. Next what we 

do we use this Smith chart as an admittance chart, and as we move from this towards the 1 plus jB 

circle we intersect first at this point, which is 1 plus j1.1, and we draw a line from the center of the 

Smith chart through this point. Similarly, if we continue our VSWR circle we intersect at 1 plus 

jB circle for the second time at this point, and we find that here the value is 1 minus j1.1. 

We drew another line through this point from the center of the Smith chart. Now, we calculate the 

distances d1 we can see that. So we find from the Smith chart that d1 by Lambda is equal to 0.204, 

and d2 by Lambda is equal to 0.376, and the corresponding lengths of the open-circuited stub can 

be found out Lo1 by Lambda is equal to 0.368 and Lo2 by Lambda is equal to 0.132.  

From the analytical solution we got t1 is equal to 3.4091, t2 is equal to Minus 1.0091 d1 by Lambda 

0.20459, d2 by Lambda 0.37428 and L1 by Lambda is equal to 0.36710, L2 by Lambda is 0.13290. 

So, we can see that the solution for d1, d2, and Lo1, Lo2 obtained graphically from the Smith chart 

is quite close to the solution that is obtained analytically.  

So, we have seen how we can do impedance matching using single stubs either series or shunt 

stub. Now, these stubs can be fabricated along with the transmission line particularly when we use 

the planar transmission line. The stubs can be fabricated along with the lines. Generally, shunt 

stubs are preferred for microstrip or steep line type of transmission line, whereas series stub is 

preferred for short line or co-planar web guide type of transmission line.  

Again as far as fabrication is concerned, when it is a planar transmission line like microstrip line, 

open-circuited stubs are advantageous because we need not use any wire connecting the steep 

conductor to the ground plane whereas short-circuited stubs are preferred when we consider 

coaxial type line.Let us now move on to another type of stub matching where we use more than 

one stub. So let us see how we can do impedance matching with double stub. Now, these two stubs 

may be spaced at a fixed distance and also located at a fixed distance from the load.  

(Refer Slide Time: 17:48) 



 

So, here we consider the load represented by YL dash, and these are the two stubs which are located 

from a fixed distance from the load they are separated by a distance d and the stubs of length l1 

and l2, the stubs may be open or short. Now, what we do first of all this YL dash is transformed by 

this length of the transmission line, and now it is YL is the load that is seen at the location of the 

first stub. So, the load YL dash is transformed to the position of the first stub as YL. 

(Refer Slide Time: 19:00) 

Analytical solution 

From the figure, we have 

 𝑌1 = 𝑌𝐿 + 𝑗𝐵1 = 𝐺𝐿 + 𝑗𝐵𝐿 + 𝑗𝐵1 

= 𝐺𝐿 + 𝑗(𝐵𝐿 + 𝐵1) 

𝑌2 = 𝑌0
𝑌1 + 𝑗𝑌0 tan𝛽𝑑

𝑌0 + 𝑗𝑌1 tan𝛽𝑑
 

We equate  𝑅𝑒(𝑌2) to 𝑌0 and find solution for 𝑑. 

 



 

Now what we need to determine again the values of B, l1, and l2 depending upon the type of the 

stub that is being used. So, we can write Y1 that is the admittance at the location of the first stub. 

YL plus jB1 which can be written in this form GL plus jBL plus B1and then once we transform this 

Y1 to the location of the second stub Y2 then we get Y2 is equal to Y0 Y1 plus jY naught tan Beta 

d divided by Y0 plus jY1 tan Beta d and then for matching we need real part of Y2 to be equal to 

Y0 and once we do that we also get the solution for this distance d.  

(Refer Slide Time: 20:04) 

Similar to earlier assumptions, let 𝑡 = tan𝛽𝑑 

𝑌2 = 𝑌0
𝑌1 + 𝑗𝑌0 tan𝛽𝑑

𝑌0 + 𝑗𝑌1 tan𝛽𝑑
 

= 𝑌0
[𝐺𝐿 + 𝑗(𝐵𝐿 + 𝐵1)] + 𝑗𝑌0𝑡

𝑌0 + 𝑗[𝐺𝐿 + 𝑗(𝐵𝐿 + 𝐵1)]𝑡
 

𝑌2 = 𝑌0
𝐺𝐿 + 𝑗(𝐵𝐿 + 𝐵1 + 𝑌0𝑡)

(𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡) + 𝑗𝐺𝐿𝑡
 

 



 

So, similar to our earlier cases, let us put t equal to tan Beta d then substituting tan Beta d by t here 

and substituting Y1 we can write Y2 in this form and after the rearrangement of terms Y2 can be 

put in this form GL plus jBL plus B1 plus Y naught t divided by Y0 minus BL minus t B1t plus jGLt 

and this entire term multiplied by Y naught. 
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On equating  𝑅𝑒(𝑌2) to 𝑌0 

𝐺𝐿
2 + 𝐺𝐿𝑌0

1 + 𝑡2

𝑡2
+
(𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡)

2

𝑡2
= 0 

𝐺𝐿 = 𝑌0
1 + 𝑡2

𝑡2
[1 ± √1 −

4𝑡2(𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡)2

𝑌2(1 + 𝑡2)2
] 

∵ 𝐺𝐿is real, 

0 ≤
4𝑡2(𝑌0 − 𝐵𝐿𝑡 − 𝐵1𝑡)

2

𝑌2(1 + 𝑡2)2
≤ 1 

0 ≤ 𝐺𝐿 ≤ 𝑌0
1 + 𝑡2

𝑡2
= 𝑌0

1 + tan2 𝛽𝑑

tan2 𝛽𝑑
=

𝑌0
sin2 𝛽𝑑

 

 



 

Now, we equate the real part of Y2 with Y0 and then we get an equation of this form. This is a 

quadratic equation. We can find out GL, and what we find that GL is real, therefore this term please 

noticed both numerator and denominator they are positive values because of the squares and 

therefore if we want to get this GL to be real this entire term has to be less than 1, so this becomes 

greater than zero and less than 1, this particular term 4t square Y0 minus BLt minus B1t whole 

square divided by Y square into 1 plus t square whole square.  

So this term is greater than zero and less than 1, and this will us the real solution for GL, and from 

this equation now we can write GL is between 0 to Y naught by sin square Beta d.  

  



(Refer Slide Time: 22:34) 

𝐵1 = −𝐵𝐿 +
𝑌0 ±√(1 + 𝑡2)𝐺𝐿𝑌0 − 𝐺𝐿

2𝑡2

𝑡
 

𝐵2 = ±
𝑌0√(1 + 𝑡2)𝐺𝐿𝑌0 − 𝐺𝐿

2𝑡2 + 𝐺𝐿𝑌0
𝐺𝐿𝑡

 

If 𝑙𝑜 and 𝑙𝑠 respectively denote the lengths for the open and short circuited stubs 

𝑙𝑜
𝜆
= −

1

2𝜋
tan−1

𝐵

𝑌0
 

and   

𝑙𝑠
𝜆
=

1

2𝜋
tan−1

𝑌0
𝐵

 

 𝐵 = 𝐵1or 𝐵2 

 

 

Similarly, we can find out the expression for B1 and B2 and once we calculate B1 and B2 we can 

calculate the lengths of the open and short stub by this relationship where this B is either B1 or B2 

and therefore we get the location which is fixed already d, the separation for that particular location 

now we get the solution for the short and the open-circuited stubs their lengths in terms of Lambda. 

We have seen the double stub matching analytically, and we have derived the closed-form 

expression for computation of stub lengths. 
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𝑌𝑖 = 𝑌𝐵 + 𝑌𝑠𝐵 = 𝑌0 

In normalized form,  1 = 𝑦𝐵 + 𝑦𝑠𝐵 

Since 𝑦𝑠𝐵 is purely imaginary we must have, 

𝑦𝐵 = 1 + 𝑗𝑏𝐵 and 𝑦𝑠𝐵 = −𝑗𝑏𝐵 

Therefore, in the Smith chart 𝑦𝐵 must lie in the 𝑔 = 1 circle. 

To meet this requirement 𝑦𝐴 at 𝐴𝐴′ must lie on the 𝑔 = 1 circle rotated  by 
4𝜋𝑑

𝜆
 counter clockwise 

direction. 

Since 𝑦𝑠𝐴 is purely imaginary, the real part of 𝑦𝐴 must be contributed solely by real part of 𝑦𝐿 i.e. 

𝑔𝐿. 

The solution of double stub matching is then determined by the intersection of 𝑔𝐿 circle with 

rotated 𝑔 = 1 circle . 

 

 

Let us now consider double stub matching using Smith chart. As shown in the figure, YL is the 

load impedance which has been transformed to the location of the first stub, and the two stubs are 

connected, separated by a distance d. We have the reference locations AA dash and BB dash at the 

location of the two stubs. Now if we look at this double stub matching circuit, we find that Yi, the 

input admittance is equal to YB, the admittance looking from here plus YsB the admittance of the 

stub. The stubs may be open or short, as shown.  



Here we need to find out the lengths of the stub lA and lB. we can write this equation in the 

normalized form 1 is equal to normalized YB plus normalized YsB. Since YsB is purely imaginary, 

this YsB is purely imaginary and we must have YsB equal to minus jbB, the susceptance of the 

stub so that we finally get Yi equal to 1 and therefore we find that in Smith chart YB must lie in 

the g is equal to 1 circle. We are using the Smith chart as an admittance Smith chart, and since the 

real part of YB is 1 it must lie on the g equal to 1 circle.  

To meet this requirement YA at AA dash must lie on the g is equal to 1 circle rotated by 4 pi d by 

Lambda counterclockwise that means towards the load because then only once we come back to g 

is equal to 1 circle we will get the required value of YB. Since YsA, the stub admittance is purely 

imaginary the real part of YA must be contributed solely by the real part of YL and the real part of 

yL is gL, and therefore the solution of double stub matching is then determined by the intersection 

of gL circle with rotated g is equal to 1 circle. So let us explain this on a Smith chart.  

(Refer Slide Time: 27:20) 

 

So, we follow the procedure as shown. We plot g is equal to 1 circle and YB should be located on 

this circle because after matching we require Yi equal to 1. Plot the rotated circle where YA should 

be located. Now, this rotated circle, we have seen that it is to be rotated counter clockwise by 4 pi 

d by Lambda.  

Here we are considering an example where d is equal to Lambda by 8, therefore, this circle has 

been rotated by pi by 2. Next, what we do, we plot YL. So this is the YL point shown. Now as we 



have said that the g is same as gL on this particular circle when we find YA the real part of YA 

should be equal to gL so what we do we move across this constant g circle which is equal to gL and 

find the intersection point, first intersection point here and this is YA1. Please note that the real 

part of this YA1 is same as gL, and then as we continue moving, we get over this circle, we get 

another intersection point YA2. Again the real part of these is same as gL. 

Now, these are the location of YA on the rotated g is equal to 1 circle. Now this has to be 

transformed to g equal to 1 circle to get the corresponding YB points and in order to do that we 

now move by the distance Lambda by 8 or an angular movement of 4 pi Lambda by d that means 

here in this case pi by 2 and follow a VSWR circle so that, we find out the intersection YA1 on 

the rotated g equal to 1 circle actually corresponds to this point YB1 on the g equal to 1 circle.  

Similarly, we find that this point will be transformed to this point, which is shown as YB. Now we 

have all four points located. So we can see that at this point YB1 is having a value 1 plus jB in that 

form and we can find out the corresponding stub length that will compensate for the imaginary 

part. Similarly, here at YA1 point we have the real part to be gL and the imaginary part has a value 

so this starting from this point this additional susceptance when added will transform YL to YA1 

values, and we can calculate the lengths of the stubs that would be necessary for this additional 

susceptance.  

So we can calculate for the other two points YA2 and YB2 as well. So, we can determine the stub 

lengths lA and lB that would be necessary, and the lengths will depend on whether we are choosing 

open-circuited at stub or short-circuited at stub. So, this is how we can use double stub for 

impedance matching. Please note that the separation between the stubs, d is fixed, and we find out 

the lengths of the stubs. Also, YL has been considered at the location of the first stub. In practice, 

YL will be the transformed value that means a load impedance transformed by a section of the 

transmission line to that location.  

(Refer Slide Time: 33:08) 



 

Another point you should remember, we have shown a shaded region and what we noticed that if 

YL lies within this shaded region and if we follow a constant g circle we cannot have an intersection 

with rotated g equal to 1 circle that means for the given arrangement of the stubs we cannot find 

the solution for this range of YL. Please note that this region for which solution is not possible the 

forbidden region, it changes depending upon the orientation of this rotated circle. For example, if 

d is less than Lambda by 8 as shown here then this circle will shrink whereas if it is more than 

Lambda by 8 this circle will actually increase in size.  

So, this actually shows the forbiddence range of the load admittances that cannot be matched with 

the given double stub tuner for which we have drawn the rotated g is equal to 1 circle.  
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We know that  

𝑍𝑖𝑛 = 𝑍1
𝑅𝐿 + 𝑗𝑍1 tan𝛽𝑙

𝑍1 + 𝑗𝑅𝐿 tan𝛽𝑙
 

Dividing the numerator and denominator by tan 𝛽𝑙  and take the limit as 𝛽𝑙 → 𝜋 2⁄ , we can write 

𝑍𝑖𝑛 =
𝑍1
2 

𝑅𝐿
.  Equating 𝑍𝑖𝑛 to 𝑍0 we get 𝑍1 = √𝑅𝐿𝑍0 

 

 

Let us now move on to another type of impedance matching network which is called a quarter-

wave transformer. So, a quarter-wave transformer it is essentially a transmission line of section of 

length Lambda by 4, and it is having a characteristic impedance ZL and it is used to match a real 

load RL to a transmission line of characteristic impedance of Z0 and we show this arrangement in 

the figure. So here we have the characteristic impedance Z0 for the transmission line, and our ZL 

is equal to RL and here in between we have a quarter-wave transformer having a length l equal to 

Lambda by 4 and its characteristic impedance is Z1. 

So what we can do we can find out the input impedance looking at this point, and this can be 

written as Zin is equal to Z1 RL plus jZ1 tan Beta l divided by Z1 plus jRL tan Beta l. Now, what we 

can do we can divide numerator and denominator by tan Beta L, and we see that when l become 



Lambda by 4 Beta l tends to pi by 2 and therefore we are left with Z1 into jZ1 divided by jRL that 

means Z1 square by RL and equating this Zin to Z0 we get Z1 to be equal to under root RL into Z0. 

So what we find that a quarter-wave transformer can match a real load RL to Z0 provided we select 

Z1 to be equal to under root RL Z0.  
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We note that matching is obtained at the frequency at which the transformer is quarter wavelength 

long and at all odd harmonics where the length corresponds to (2𝑛 + 1) 𝜆 4⁄ . 

The fractional bandwidth of such quarter-wave transformer can be found as: 

∆𝑓

𝑓0
= 2 − (

4

𝜋
) cos−1 [

𝛤𝑚

√1 − 𝛤𝑚2 

2√𝑍1𝑅𝐿
|𝑅𝐿 − 𝑍0|

] 

𝛤𝑚 is the magnitude of the acceptable value of reflection coefficient 

 

 

So we note that matching is obtained at the frequency at which the transformer is quarter wave 

long. So, this is very important to note because once we have a physical section of a transmission 

line this will be a quarter wave long only at a particular frequency. So, exact matching is obtained 

only at a particular frequency and also at all odd harmonics where the length corresponds to 2n 

plus 1 Lambda by 4 that means 3 Lambda by 4, 5 Lambda by 4. For all these lengths also we will 

get exact matching.  



Now, as I have told that the length of the quarter wave transformer is exactly Lambda by 4 only at 

the operating frequency f naught. At other frequencies f greater than f naught or less than f naught 

this length will not be exactly Lambda by 4 and there will be some amount of mismatch and we 

can calculate the fractional bandwidth which is defined we by delta f by f naught, f naught is the 

operating center frequency and delta f gives the frequency deviation from f naught.  

This can be found out and this is given by this expression 2 minus 4 by pi cos inverse, Gamma m, 

here this Gamma m is the maximum value of the reflection coefficient that we are ready to accept 

and depending upon this Gamma m the fractional bandwidth is given by delta f divided by f naught, 

f naught is the center frequency or the designed frequency, delta f is the frequency deviation and 

this is given by 2 minus 4 by pi cos inverse of 2 Gamma m, Gamma m is the magnitude of the 

reflection coefficient that we are ready to accept. You can see that with different value of 

acceptable level of reflection coefficient fractional bandwidth will be different. So this is cos 

inverse to Gamma m divided by under root 1 minus Gamma m square into 2 underroot Z1 into RL 

divided by mode of RL Minus Z0.  

So this expression will give the fractional bandwidth for the quarter wave transformer and we can 

actually have different fractional bandwidth depending upon the maximum value of the reflection 

coefficient at the pass bent edges that we are ready to accept.  

(Refer Slide Time: 40:51) 

 



Now, quarter wave transformer can also be used with other circuitery in the design of a matching 

network for matching a complex load impedance to a transmission line. So, we show some 

examples of such networks. For example, here ZL is a complex load to be matched to Z naught. 

What we can do? We can take a transmission line section of length d and transform this ZL in such 

a way that the imaginary part becomes zero. So, once we can do that, here we will be left with a 

real transformed value of the load and that real value can be matched to the transmission line using 

a quarter wave transformer.  

Another example is shown here where suppose we put a stub at the location of the load ZL to cancel 

out the reactive part now it is shown with a shunt stub that means this shunt stub and ZL combined 

will give a resistive load impedance here which can be transformed to Z0 by using these quarter 

waver transformer.Let us now move on to another topic which is the theory of small reflections.  
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A single section transformer is shown in figure. 

The partial reflection and transmission coefficient of the single section transformer are: 

𝛤 1 =
𝑍2 − 𝑍1
𝑍2 + 𝑍1

 

𝛤 2 = −𝛤1 

𝛤 3 =
𝑍𝐿 − 𝑍2
𝑍𝐿 + 𝑍2

 

𝑇 21 = 1 + 𝛤 1 =
2𝑍2

𝑍𝐿 + 𝑍2
 

𝑇 12 = 1 + 𝛤 2 =
2𝑍1

𝑍𝐿 + 𝑍2
 

 



 

So here what we are considering, we are considering a load impedance ZL, a transmission line of 

characteristic load impedance Z1 and in between we have another section of transmission line with 

characteristic impedance Z2 and the electrical length of this section is Beta l is equal to Theta. So 

this is essentially a single section transformer and we define the partial reflection and transmission 

coefficient.  

So here Gamma is the overall reflection coefficient. Now at this junction when the wave travels it 

sees a mismatch of impedance and the partial reflection coefficient Gamma 1 is dependent upon 

this mismatch Z2 – Z1 divided by Z1 plus Z2 as you will see. So the wave traveling in this 

transmission line seeing characteristic impedance Z1 finds a mismatch here and Gamma 1 is the 

partial reflection coefficient.  

Similarly, a part of the wave will also travel to the second section of the transmission line and we 

have T21 is the transmission coefficient from transmission line section 1 to 2. Now, this wave 

traveling in this second section finds another mismatch when it reaches the load impedance ZL. So 

we define gamma 3 as the partial reflection coefficient and Gamma 3 will depend only on Z2 and 

ZL.  

  



Similarly the reflected wave from the load it will also get reflected by this interface and this is 

denoted by Gamma 2 which will again depend upon Z2 and Z1. So we can write these partial 

reflection coefficients. Gamma 1 is Z2 minus Z1 divided by Z2 plus Z1. Gamma 2 will be Z1 minus 

Z2 divided by Z1 plus Z2 which is same as minus of Gamma 1 and Gamma 3 will be ZL minus Z2 

divided by ZL plus Z2. So having defined Gamma 1, Gamma2 and Gamma 3, now we define T21 

which is equal to 1 plus Gamma 1 and it becomes 2 Z2 by Z1 plus Z2. 

Similarly T12 which is 1 plus Gamma 2, it becomes 2 Z1 divided by Z1 plus Z2. Now let us consider 

here suppose a wave of unity magnitude it is incident here then as it first times reaches this interface 

we will have Gamma 1 as the reflected wave and T21 is the transmitted one then it will travel down 

this transmission line so the phase changes represented by e to the power minus j Theta where 

Theta is actually Betal and then it gets reflected from this point where there is a mismatch between 

the transmission line and the load impedance.  

So, it will essentially get multiplied by Gamma 3 here. So if we start with the wave incident here 

we can see that here we will get T21, at this stage it will be T21 e to the power minus j Theta and 

then multiplied by Gamma 3 then, it will travel down so it will become T21 Gamma 3 e to the 

power minus j2 Theta and then at this interface it will get reflected again and we have Gamma 2 

as the partial reflection coefficient and T12 will be the transmission coefficient here. 

So, finally the wave that will immerse from here will be T21 e to the power minus j 2 Theta into 

Gamma 3 into T12. So these are all waves, reflected waves from this interface and these are all 

partial reflected waves. So we can write the total reflection coefficient Gamma in terms of these 

partial reflected signals.  
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Thus, we can express the total reflection coefficient as a sum of partial reflection and transmission 

coefficients: 

𝛤 = 𝛤1 + 𝑇12𝑇21𝛤3𝑒
−𝑗2𝜃 + 𝑇12𝑇21𝛤3

2𝛤2𝑒
−𝑗4𝜃 +⋯ 

= 𝛤1 + 𝑇12𝑇21𝛤3𝑒
−𝑗2𝜃 ∑𝛤2

𝑛𝛤3
𝑛𝑒−𝑗2𝑛𝜃

∞

𝑛=0

 

∵ ∑ 𝑥𝑛 =
1

1−𝑥
∞
𝑛=0  for |𝑥| < 1 

We can write, 

𝛤 = 𝛤1 +
𝑇12𝑇21𝛤3𝑒

−𝑗2𝜃

1 − 𝛤2𝛤3𝑒−𝑗2𝜃
 

 

 

So we can write Gamma is equal to Gamma 1, first one, then T21 e to the power minus j Theta, 

Gamma 3 e to the power minus j Theta T12 that means this term becomes T12 T21 Gamma 3 e to 

the power minus j 2 Theta. Similarly, from here the partial reflected term is T12 T21 Gamma 3 

square because now it will undergo another reflection here and another Gamma 2 will come here 

because this signal is reflected from here so we will have T12 T21 Gamma 3 square Gamma 2 and 

total phase shift will be 1, 2, 3, 4 so e to the power minus j4 Theta.  



Now, it will be, this term will be a common term in all the terms and this can be put in a sumession 

form as shown. It may be noted that since Gamma2 Gamma3 they are reflection coefficient, their 

magnitude is less than 1 and we know that when we have a sum of x rest to the power n where 

magnitude of x is less than 1 it can be expressed as sum of x rest to the power n, n extending to be 

zero to infinity is equal to 1 by 1 Minus x when mode of x is less than 1 and if we apply this 

relation we can write this submission replaced by 1 minus Gamma 2 Gamma 3 e to the power 

minus j2 Theta and hence we get Gamma to be equal to Gamma 1 plus T12 T21 Gamma 3 e to the 

power minus j2 Theta divided by 1 minus Gamma 2 Gamma 3 e to the power minus j2 Theta. 
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Using, 𝛤 2 = −𝛤1,𝑇 21 = 1 + 𝛤 1,  𝑇 12 = 1 − 𝛤 1, we can write 

𝛤 = 𝛤1 +
𝑇12𝑇21𝛤3𝑒

−𝑗2𝜃

1 − 𝛤2𝛤3𝑒−𝑗2𝜃
 

as 

𝛤 = 𝛤1 +
(1 − 𝛤 1)(1 + 𝛤 1)𝛤3𝑒

−𝑗2𝜃

1 − (−𝛤1)𝛤3𝑒−𝑗2𝜃
 

= 𝛤1 +
(1 − 𝛤1

2)𝛤3𝑒
−𝑗2𝜃

1 + 𝛤1𝛤3𝑒−𝑗2𝜃
 

=
𝛤1 + 𝛤1

2𝛤3𝑒
−𝑗2𝜃 + 𝛤3𝑒

−𝑗2𝜃 − 𝛤1
2𝛤3𝑒

−𝑗2𝜃

1 + 𝛤1𝛤3𝑒−𝑗2𝜃
 

∴ 𝛤 =
𝛤1 + 𝛤3𝑒

−𝑗2𝜃

1 + 𝛤1𝛤3𝑒−𝑗2𝜃
 

 



 

Now we use the relation Gamma 2 is equal to minus Gamma1, T21 is equal to 1 plus Gamma1 and 

T12 is equal to 1 plus Gamma 2 which is equal to 1 minus Gamma1 and then we can write this 

expression as by replacing T12 and T21 and also replacing Gamma 2 by minus Gamma 1 you can 

put it in this form. Now, finally it becomes Gamma1 plus 1 minus Gamma1 square Gamma 3 e to 

the power minus j2 Theta divided by 1 plus Gamma 1 Gamma 3 e to the power minus j2 Theta. 

So, this we can write once we multiply this denominator term by Gamma 1 and then the terms 

shown in red they will cancel out and you will be left with Gamma is equal to Gamma1 plus 

Gamma3 e to the power minus j2 Theta divided by 1 plus Gamma1 Gamma3 e to the power minus 

j2 Theta. 
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For a smaller discontinuity between 𝑍1, 𝑍2and 𝑍2, 𝑍𝐿, |𝛤1𝛤3| ≪ 1 and can be neglected.  

Thus, 𝛤 =
𝛤1+𝛤3𝑒

−𝑗2𝜃

1+𝛤1𝛤3𝑒−𝑗2𝜃
 can be written as 

𝛤 ≃ 𝛤1 + 𝛤3𝑒
−𝑗2𝜃 

It may be noted that, 

• 𝑒−𝑗2𝜃 is the phase delay when the incident wave travels up and down . 

• The total reflection coefficient is dependent on the initial reflection coefficient (𝛤1) between 

𝑍1and 𝑍2, and on the first reflection (𝛤3) between 𝑍2and 𝑍𝐿. 

 

 

Now suppose we have the condition that discontinuity between Z1 and Z2 and Z2 and ZL these are 

small so that both Gamma1 and Gamma3 they are very small and their product, magnitude of the 

product of Gamma1 and Gamma 3 will be very, very small compared to 1 and neglecting this term 

we can write, we neglect these with respect to 1 and we write Gamma is equal to Gamma1 plus 

Gamma3 e to the power minus j2 Theta. So, it may be noted that e to the power minus j2 Theta is 

the phase delay when the incident wave travels up and down and the total reflection coefficient is 

dependent on the initial reflection coefficient between Z1 and Z2 and on the first reflection between 

Z2 and ZL. 


