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𝛤0 =
𝑍1 − 𝑍0
𝑍1 + 𝑍0

 

𝛤𝑛 =
𝑍𝑛+1 − 𝑍𝑛
𝑍𝑛+1 + 𝑍𝑛

 

𝛤𝑁 =
𝑍𝐿 − 𝑍𝑁
𝑍𝐿 + 𝑍𝑁

 

 

 

So we have seen the theory of small reflections, let us now consider a multi-section matching transformer. 

The figure shows a multi-section matching transformer where we have capital N number of sections, each 

section is having an electrical length theta and the transmission line sections have impedances Z1 and Z2 up 

to Zn. And this transformer is designed to match this load Zl to this transmission line having characteristic 

impedance Z0 Now we introduce the partial reflection coefficients gamma zero, gamma 1, gamma 2, gamma 

n at this interfaces. So whenever there is a change in impedance and gamma is the overall reflection 

coefficient. 



We can write gamma 0 equal to Z  minus Z0 divided by Z1 plus Z0 and continuing in this manner. Gamma 

n is equal to Zn plus 1 minus Zn divided by Zn plus 1 plus Zn. And finally gamma capital N is Zl minus Z 

capital N divided by Zl  plus Z capital N. 
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Assume all 𝑍𝑛 increase or decrease monotonically across the transformer and 𝑍𝐿 is real. 

𝛤(𝜃) = 𝛤0 + 𝛤1𝑒
−𝑗2𝜃 + 𝛤2𝑒

−𝑗4𝜃 +⋯+ 𝛤𝑁𝑒
−𝑗2𝑁𝜃 

Further, on assuming the transformer to be symmetrical, we can write 

𝛤(𝜃) = 𝑒−𝑗𝑁𝜃{𝛤0[𝑒
𝑗𝑁𝜃 + 𝑒−𝑗𝑁𝜃] + 𝛤1[𝑒

𝑗(𝑁−2)𝜃 + 𝑒−𝑗(𝑁−2)𝜃] + ⋯ } 

 

Now we assume that all Zn they increase or decrease monotonically and Z1 is real so that means this  Z1,  

Z2, Zn will increase either monotonically or decrease monotonically depending upon the values of Z0 and 

Zl. If we consider the theory of small reflections what we have discussed, we can write gamma the overall 

reflection coefficient as a function of theta as gamma nought plus gamma 1. This is the partial reflection 

coefficient minus j, e to the power minus j2 theta plus gamma 2 e to the power minus j4 theta and gamma 

capital N e to the power minus j2 capital N theta. Further we assume that the transformer be symmetrical 

that means what we mean is gamma nought is equal to gamma N.  Please note that, impedance increase or 

decrease monotonically. 

But this impedance level for example Z1 and Z0 is selected in such a way that gamma nought becomes equal 

to gamma L which is decided by ZL and Zn. So if we assume this type of symmetry then we can write 

gamma theta e to the power minus jn theta gamma nought e to the power jn theta plus e to the power minus 



jn theta plus gamma 1 e to the power jn minus 2 theta plus e to the power minus jn minus 2 theta plus and 

so on. 
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𝛤(𝜃) = 𝑒−𝑗𝑁𝜃{𝛤0[𝑒
𝑗𝑁𝜃 + 𝑒−𝑗𝑁𝜃] + 𝛤1[𝑒

𝑗(𝑁−2)𝜃 + 𝑒−𝑗(𝑁−2)𝜃] + ⋯ } 

If N is even, the last term will be 𝛤𝑁/2. 

If N is odd, the last term will be 𝛤(𝑁−1)/2(𝑒
𝑗𝜃 + 𝑒−𝑗𝜃). 

The above equation can also be written in terms of Fourier cosine series in 𝜃 as: 

𝛤(𝜃) =

{
 
 

 
 
2𝑒−𝑗𝑁𝜃 [

𝛤0 cos𝑁𝜃 + 𝛤1 cos(𝑁 − 2)𝜃 +⋯+ 𝛤𝑛 cos(𝑁 − 2𝑛)𝜃 +⋯

+
1

2
𝛤𝑁/2

] 𝑓𝑜𝑟 𝑁 𝑒𝑣𝑒𝑛

2𝑒−𝑗𝑁𝜃 [
𝛤0 cos𝑁𝜃 + 𝛤1 cos(𝑁 − 2)𝜃 +⋯+ 𝛤𝑛 cos(𝑁 − 2𝑛)𝜃 +⋯

+𝛤(𝑁−1)/2 cos𝜃
] 𝑓𝑜𝑟 𝑁 𝑜𝑑𝑑

 

 

Now capital N it can be even, in that case, the last term will be gamma capital N by 2. If capital N is odd 

the last term will be gamma capital n minus 1 by 2 e to the power j theta plus e to the power minus j theta. 

And these two equations can be written in terms of Fourier Cosine series. In theta s, gamma is a function 

of theta is equal to 2 e to the power minus jn theta, gamma nought cos n theta gamma 1 cos n minus 2 theta 

and finally half gamma n by 2 for an even and gamma as a function of theta equal to 2 e to the power minus 

j capital N theta gamma nought cos n theta plus gamma 1 cos n minus 2 theta and finally gamma n minus 

1 by 2 cos theta when capital N is odd. 
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The passband response of a binomial matching transformer for a given number of sections is as flat as 

possible near the design frequency. 

Reflection coefficient of such a response is given by 

𝛤(𝜃) = 𝐴(1 + 𝑒−𝑗2𝜃)
𝑁

 

∴ |𝛤(𝜃)| = |𝐴(1 + 𝑒−𝑗2𝜃)
𝑁
| = |𝐴||𝑒−𝑗𝜃(𝑒𝑗𝜃 + 𝑒−𝑗𝜃)|

𝑁
 

|𝛤(𝜃)| = |𝐴||𝑒−𝑗𝜃|
𝑁
|(𝑒𝑗𝜃 + 𝑒−𝑗𝜃)|

𝑁
= |𝐴||(2 cos 𝜃)|𝑁 

|𝛤(𝜃)| = 2𝑁|𝐴||(cos 𝜃)|𝑁 

|𝛤(𝜃)| = 0 for 𝜃 =
𝜋

2
 and 𝑑𝑛|𝛤(𝜃)| 𝑑𝜃𝑛⁄ = 0 at 𝜃 =

𝜋

2
  for 𝑛 = 1,2…… (𝑁 − 1) 

𝜃 = 𝛽𝑙 =
𝜋

2
 for  𝑙 = 𝜆 4⁄  at the design frequency 𝑓0 

 

 

So, now we have discussed how we can find out the reflection coefficient for a multi-section transformer 

in terms of the electrical length of the individual section theta and now let us see how we can design a 

Binomial multi-section matching transformer? Now the passband response of a binomial matching 

transformer for a given number of sections is as flat as possible near the design frequency. So that is why 

it is also called maximally flat response.  

And in this type of design what we do the reflection coefficient that means gamma theta can be represented 

as gamma theta is equal to A 1 plus e to the power minus j2 theta raised to the power N. So we already have 

a Fourier expansion of gamma theta, so we are trying to now map this response so if we write modulus of 



gamma theta then we can write its mod of A 2 cos theta mod raised to the power N and this can be written 

as modulus of gamma theta is equal to 2 to the power N modulus of A modulus of cos theta raised to the 

power N. 

Now we can see that modulus of gamma theta equal to zero for theta equal to pi by 2 and nth derivative d 

n modulus gamma theta n is equal to zero at theta is equal to Pi by 2 for n equal to 1, 2 capital n minus 1. 

And we find that theta equal to Pi by 2 corresponds to l is equal to lambda by 4 that means now we are 

considering a binomial multi-section transformer where each element, each transmission line sections are 

lambda by 4 or quarter wave long at the design frequency.  
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Letting 𝑓 → 0 i.e.𝜃 = 𝛽𝑙 = 0,  all sections are of zero electrical length. 

𝛤(𝜃 = 0) = 2𝑁𝐴 =
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

 

Thus, the constant 𝐴 can be determined as 

𝐴 = 2−𝑁
𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

 

 

  



Now if you consider f equal to 0 then theta becomes zero and all sections have zero electrical length. What 

does it mean that the line directly connected to the load impedance and therefore from the expression of 

gamma theta evaluated at theta equal to zero, we can write 2 to the power N A and N is equal to ZL minus 

Z0 divided by ZL plus Z0 and the constant A can be determined as A is equal to 2 to the power minus N ZL 

minus Z0 divided by ZL  plus Z0. Please note that we have already mentioned that this matching transformer 

we are considering for a real load ZL. 
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On expanding 𝛤(𝜃) = 𝐴(1 + 𝑒−𝑗2𝜃)
𝑁

 using binomial expansion, we get 

𝛤(𝜃) = 𝐴(1 + 𝑒−𝑗2𝜃)
𝑁
= 𝐴∑𝐶𝑛

𝑁𝑒−𝑗2𝑛𝜃
𝑁

𝑛=0

 

where, 

𝐶𝑛
𝑁 =

𝑁!

(𝑁 − 𝑛)! 𝑛!
 

On equating this response to the actual response, we get 

𝛤(𝜃) = 𝐴∑𝐶𝑛
𝑁𝑒−𝑗2𝑛𝜃 = 𝛤0 + 𝛤1𝑒

−𝑗2𝜃 + 𝛤2𝑒
−𝑗4𝜃 +⋯+ 𝛤𝑁𝑒

−𝑗𝑁𝜃

𝑁

𝑛=0

 

⇒ 𝐴𝐶𝑛
𝑁 = 𝛤𝑛 

 

Now we can expand this expression 1 plus e to the power minus j 2 theta raise to the power N using binomial 

expansion and we can write gamma theta is equal to A sum of n equal to 0 to capital N and Cn 
N e to the 



power minus j2n theta, where we are defining Cn 
N as factorial N divided by factorial capital N minus n into 

factorial small n. And what we can do, as we said that now we equate it to the response of a multi section 

transformer which is given by gamma nought plus gamma 1 e to the power minus j2 theta plus gamma 2 e 

to the power minus j4 theta. And what we can do, we can equate on a term by term basis then we find A, 

Cn 
N is equal to gamma n. 

(Refer Slide Time: 10:55) 

Now 

𝛤𝑛 =
𝑍𝑛+1 − 𝑍𝑛
𝑍𝑛+1 + 𝑍𝑛

 

∵
𝑍𝑛+1

𝑍𝑛
≈ 1 and ln 𝑥 ≃ 2

𝑥−1

𝑥+1
 for 𝑥 close to unity, 

𝛤𝑛 ≃
1

2
ln
𝑍𝑛+1
𝑍𝑛

 

⇒ 2𝛤𝑛 = ln
𝑍𝑛+1
𝑍𝑛

 

⇒ ln
𝑍𝑛+1
𝑍𝑛

= 2𝐴𝐶𝑛
𝑁 = 2 (2−𝑁)

𝑍𝐿 − 𝑍0
𝑍𝐿 + 𝑍0

𝐶𝑛
𝑁 

⇒ ln
𝑍𝑛+1
𝑍𝑛

≃ 2−𝑁 𝐶𝑛
𝑁ln

𝑍𝐿
𝑍0

 

 

 

Now we have gamma n is Zn plus 1 minus Zn divided by Zn plus 1 plus Zn. What we can do as we have said 

that the change in characteristic impedance from one section to the next section is very small. So we can 



use this equation log of x is approximately equal to 2 x minus 1 divided by x plus 1 when x is close to unity. 

So our Zn plus 1 by Zn is close to unity, and using this expression for log x we can write gamma n to be 

equal to half log Zn plus 1 divided by Zn. Therefore log Zn plus 1 by Zn we can now substitute gamma n 

which is 2A Cn 
N and then substitute the value of A, which is 2 to the power minus N Z l minus Z0 divided 

by ZL plus Z0 what we have derived earlier.  

And then we can further simplify it into log of Zn plus 1 by Zn is approximately 2 to the power minus N, Cn 

N  log Zl by Z nought. Now this gives us a relationship where we can calculate Zn, Z small n alternatively 

where we can calculate Z small n recursively. So we start with Z0, please note that right hand side is known 

so we can calculate  Z1 then once Z1 is known we can calculate Z2 and in that way we can keep calculating 

till Z capital N. We can find the characteristic impedance of all the lambda by four sections that are used in 

that multi-section transformer design. 
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Let  𝛤𝑚 be the maximum value of the reflection coefficient that can tolerated over the passband 

 𝛤𝑚 = 2𝑁|𝐴| cos𝑁 𝜃𝑚                      ⇒ 𝜃𝑚 = cos−1 [
1

2
(
𝛤𝑚

|𝐴|
)
1/𝑁

] 

where 𝜃𝑚 <
𝜋

2
, is the lower edge of the passband. 

Therefore, the fractional bandwidth can be obtained as 

∆𝑓

𝑓0
=
2(𝑓0 − 𝑓𝑚)

𝑓0
= 2 −

4𝜃𝑚
𝜋

= 2 −
4

𝜋
cos−1 [

1

2
(
𝛤𝑚
|𝐴|
)
1/𝑁

] 

 

 



We can also have an estimate of the bandwidth that we can have for this type of a multi-section quarter-

wave matching transformer. Let gamma m be the maximum reflection coefficient that we can tolerate over 

the passband then we can write gamma m is equal to 2 to the power N mod A cos raised to the power N 

theta M and from there we can find out theta m corresponding to that value of gamma m, and we know that 

the reflection coefficient will increase on either side of the design frequency for which we have theta is 

equal to pi by 2.  

So we take this theta m value less than Pi by 2 and now we can write fractional bandwidth delta f by f0 is 

equal to two times f nought minus fm divided by f nought, fm is that frequency at which the reflection 

coefficient becomes gamma m and that can be written as 2 4 by pi cos inverse half gamma m divided by 

modulus of A raised to the power 1 by N. Here this N is the number of sections that are present in the 

transformer. 
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Let the impedance 𝑍of the line varies with 𝑧 as shown 

Let the tapered line being made up of incremental line lengths ∆𝑧 as shown. 

∆𝛤 =
𝑍 + 𝛥𝑍 − 𝑍

𝑍 + 𝛥𝑍 + 𝑍
≃
𝛥𝑍

2𝑍
 

For ∆𝑧 → 0,  

𝑑𝛤 =
𝑑𝑍

2𝑍
=
1

2

𝑑(ln(𝑍 𝑍0⁄ ))

𝑑𝑧
𝑑𝑧 

Note that:  
𝑑(ln(𝑍 𝑍0⁄ ))

𝑑𝑧
𝑑𝑧=

𝑍0

𝑍

1

𝑍0

𝑑𝑍

𝑑𝑧
𝑑𝑧 =

𝑑𝑍

𝑍
 

 



 

Let us now move onto another method of impedance matching, the impedance matching with tapered lines. 

Here the impedance capital Z of the line varies with distance z and we are showing this in this figure. So at 

small z is equal to zero we have capital Z, Z is equal to Z0 and over a length L this impedance capital Z 

changes to ZL. Now what we can do, we can consider this tapered line being made up of incremental line 

lengths delta Z as shown. 

So here you can see we have an incremental length delta Z, on the left-hand side we have impedance capital 

Z and over this length small delta z we assume the impedance to be capital Z plus delta capital Z and 

therefore at this interface the reflection coefficient the partial reflection coefficient delta gamma can be 

written as Z plus delta Z minus Z divided by Z plus delta Z plus Z. Now in the denominator we neglect this 

delta Z term and we can write the approximate expression as delta Z by 2Z. Now when this delta Z tends 

to zero this length tends to zero, we can write delta gamma as d gamma. 

So d gamma becomes equal to d of capital Z divided by 2Z and this can be written in this form half d of log 

Capital Z by Z0 divided by dz into dz. This can be seen from here because d of log of capital Z by Z0 by dz 

into dz is essentially d of capital Z by capital Z. 
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𝑑𝛤 =
𝑑𝑍

2𝑍
=
1

2

𝑑(ln(𝑍 𝑍0⁄ ))

𝑑𝑧
𝑑𝑧 

By theory of small reflection, the total reflection coefficient at 𝑧 = 0 is given by 

𝛤 =
1

2
∫ 𝑒−2𝑗𝛽𝑧
𝐿

0

𝑑(ln(𝑍 𝑍0⁄ ))

𝑑𝑧
𝑑𝑧 

For a given 𝑍(𝑧) we can find 𝛤 

 

 

Next what we do, now we have this expression we apply again the theory of small reflection. Now the total 

reflection coefficient at Z is equal to zero. That means at the input of the tapered line is given by gamma is 

equal to half integration 0 to L, e to the power minus 2j beta z, this is the phase shift and d of log of capital 

Z by Z0 by dz into dz. Now this gives the overall reflection coefficient at the input of the tapered line. Please 

note that if we know Z z that means the impedance variation as a function of distance Z we can find gamma.  
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𝑍(𝑧) = 𝑍0𝑒
𝛼𝑧  for 0 ≤ 𝑧 ≤ 𝐿 

Since 𝑍(𝑧 = 𝐿) = 𝑍𝐿 = 𝑍0𝑒
𝛼𝐿 , therefore, 𝛼 =

1

𝐿
ln
𝑍𝐿

𝑍0
 

We have seen 𝛤 =
1

2
∫ 𝑒−2𝑗𝛽𝑧
𝐿

0

𝑑(ln(𝑍 𝑍0⁄ ))

𝑑𝑧
𝑑𝑧 

 Therefore, 𝛤 =
1

2
∫ 𝑒−2𝑗𝛽𝑧
𝐿

0

𝑑(ln(𝑒𝛼𝑧))

𝑑𝑧
𝑑𝑧 =

1

2
𝛼 ∫ 𝑒−2𝑗𝛽𝑧

𝐿

0
𝑑𝑧 



𝛤 =
1

2𝐿
ln
𝑍𝐿
𝑍0
∫ 𝑒−2𝑗𝛽𝑧
𝐿

0

𝑑𝑧 =
1

2
ln
𝑍𝐿
𝑍0
𝑒−𝑗𝛽𝐿

sin𝛽𝐿

𝛽𝐿
 

 

 

 

So let us see how we can do that, so we consider a very commonly used taper which is an exponential taper. 

Here capital Z as a function of distance Z is given by Z0 e to the power alpha z, for zero less than z and  Z 

less than capital L. Now since this capital Z at z is equal to L is ZL and therefore we can find alpha to be 

equal to 1 by L log of  ZL by Z0. And we have the expression for gamma, now in this expression we have 

we can now substitute Z equal to Z0 e to the power alpha z so this Z0 and this Z0 will get canceled, we will 

be left with log of e to the power alpha z and this can be log of e to the power alpha Z will give alpha z.  

When differentiated we will be left with alpha and integration of 0 to capital L e to the power minus 2 j 

beta z dz. Now we substitute the expression for alpha from 1 by L log of capital ZL by Z0 and then carry out 

this integration, then we get the final expression for the reflection coefficient gamma to be half log of ZL 

by Z0 e to the power minus j beta L sine beta L by beta L. 
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𝛤 =
1

2
ln
𝑍𝐿
𝑍0
𝑒−𝑗𝛽𝐿

sin𝛽𝐿

𝛽𝐿
 

It may be noted that here 𝛽 is assumed to be not a function of 𝑧.  

Peak values of |𝛤| decreases with 𝐿 and the length should greater than 𝜆 2⁄  to minimize mismatch at low 

frequency 



 

The magnitude of the reflection coefficient is plotted in this figure as a function of L by lambda, and we 

can see that as L by lambda increases the peak value of mod gamma decreases, and the length should be 

greater than lambda by 2, at least lambda by two to minimize mismatch at low frequency. This is because 

this exponential taper is designed to operate for broadband of frequencies and we want the  reflection 

coefficient  to be less than some specified value, say if it is to be less than 0.1 even at the lowest operating 

frequency then we should have L by lambda at that frequency greater than 0.5. 

 

So, the peak values of mod gamma decrease with Land length should be greater than lambda by 2 to 

minimize mismatch at low frequency, and it is to be noted that we have considered beta independent of z 

that means it is not a function of z and such assumptions are valid for TEM lines. There are other forms of 

tapers like triangular tapers, and the impedance matching can be performed with such tapers. This actually 

brings to the end of this module. 

 In this module we have discussed in detail some of the impedance matching techniques starting with the 

lambda elements then we have seen matching with stubs. We have seen how impedance matching can be 

done using a quarter-wave transformer, we have seen how we can design a multi-section quarter-wave 

transformer, and finally we have seen how we can use taper line for doing impedance matching. Our next 

module will be on microwave resonators where we will study first series and parallel resonant circuits, and 

we will have discussion on Q factor bandwidth, and then we will discuss transmission line resonators as 

well as web guide resonators. 


