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We start a new module Microwave Resonators.  
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In this module, we cover the following contents. First, we discuss series and parallel resonant 

circuits, conventional circuits, then we discuss Q-factor both unloaded and loaded Q-factor. 



We discuss the bandwidth of such circuits then we also cover transmission line resonators, and 

finally we discuss waveguide resonators. 
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So, a resonator is a device or circuit that exhibits resonance. An electrical circuit resonance 

condition occurs at a frequency when the capacitive and inductive reactances become equal in 

magnitude, and electrical energy oscillates between electric field of a capacitor and magnetic 

field of an inductor. Microwave resonators are used in a variety of applications, for example, 

filters, oscillators, tuned amplifiers, frequency meters, these are some of the examples where 

microwave frequency resonators are used. 

Now, at frequencies near resonance, a microwave resonator can be modeled as series or parallel 

RLC lumped-element circuit. Therefore, the basic properties of series and parallel RLC circuits 

are reviewed first.  
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For the series RLC circuit shown in the figure: 

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿 − 𝑗
1

𝜔𝐶
= 𝑅 + 𝑗𝜔𝐿 (1 −

1

𝜔2𝐿𝐶
) 

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿 (1 −
𝜔0
2

𝜔2
) 

where 𝜔0 =
1

√𝐿𝐶
 

 

So, we consider series RLC circuit, and for the series, RLC circuit shown in the figure we can 

write Z in is equal to R plus j omega L minus j 1 by omega C, and then we can write Zin equal 

to R plus j omega L into 1 minus 1 by omega square LC. Now, writing omega naught square 

is equal to 1 by LC. We find that Z in can be written as R plus j omega L 1 minus omega naught 

square divided by omega square. 

So, omega naught is the resonant frequency because whenever omega is equal to omega naught 

the imaginary part of the input impedance become zero, and Zin becomes purely (())(04:04). 

We should note that for a series RLC circuit, the real part of Zin, this is constant R and the 

imaginary part of Zin below resonant frequency omega naught, this is capacitive and above 

resonant frequency omega naught it becomes inductive. So, if we plot the imaginary part of Zin 

and here at omega equal to omega naught the resonant frequency the imaginary part of Zin 

becomes zero. 
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|𝑍𝑖𝑛(𝜔)| = √𝑅2 + 𝜔2𝐿2(1 − 𝜔0
2 𝜔2⁄ )2 

An important parameter of the resonant circuit is its 𝑄 which is defined as: 

𝑄 = 𝜔
average energy stored

average power dissipated
 

𝑄 = 𝜔
𝑊𝑚 +𝑊𝑒

𝑃loss
 

At resonance, 𝑊𝑚 = 𝑊𝑒 

 

 

We can write magnitude of Zin as a function of omega as under root R square plus omega square 

L square 1 minus omega naught square by omega square whole square and if we plot magnitude 

of Zin omega then we find that from this expression at omega equal to omega naught, magnitude 

of Zin omega becomes minimum and equal to R for other values of omega magnitude of Zin 

omega is greater than R, and we have marked this horizontal line where it becomes R by 0.707 

that means root to R.  

These particular points see we will relate it to half-power bandwidth of the resonator. An 

important parameter of resonant circuit is it is Q which is defined as Q is equal to omega 

average energy stored divided by average power dissipated, this parameter Q is called the 

equality factor and therefore, we can write Q is equal to omega Wm the energy stored in 

magnetic field plus We the energy stored in the capacitor, this is the energy stored in the 

inductor Wm. 



So, sum of these two energies it gives the total energy divided by P loss, the loss happens at 

the resistance R. Now, at resonance that means when omega is equal to omega naught W m 

becomes equal to We and therefore we can write Q it can be written as either omega naught 

2Wm by Ploss or omega naught 2We by Ploss we will see and the Q of a resonator itself this 

regarding external loading. 

That means we are assuming that no external load is connected to this resonator whatever Q 

that we are getting that is within the resonator itself that is because of the losses within the 

resonator itself and this is called unloaded Q and denoted by Q naught. 
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Therefore, 𝑄0 = 𝜔0
2𝑊𝑚

𝑃loss
 

𝑄0 = 𝜔0

|𝐼|2𝐿

|𝐼|2𝑅
= 𝜔0

𝐿

𝑅
 

Since 𝜔0
2 =

1

𝐿𝐶
 

𝑄0 =
1

𝜔0𝑅𝐶
 

Let us now study the behavior of the input impedance of a series RLC resonator near its 

resonance 

𝑍𝑖𝑛 = 𝑅 + 𝑗𝜔𝐿 (
𝜔2 −𝜔0

2

𝜔2
) 

In the vicinity of resonance, 

𝜔2 − 𝜔0
2 = (𝜔 − 𝜔0)(𝜔 + 𝜔0) ≅2𝜔∆𝜔 

For small ∆𝜔, 

𝑍𝑖𝑛 ≅ 𝑅 + 𝑗𝜔𝐿
2𝜔∆𝜔

𝜔2 ≅ 𝑅 + 𝑗2∆𝜔𝐿 

𝑍𝑖𝑛 ≅ 𝑅 +
𝑗2∆𝜔𝑅𝑄0

𝜔0
 

 



 

So, therefore Q naught is omega naught 2Wm divided by Ploss, and when we substitute the term 

related to the energy stored in the inductor and the power loss or dissipation in the resistor then 

we get Q naught equal to omega naught L by R and since omega naught square is equal to 1 

by LC we can also write Q naught is equal to 1 by omega naught RC we can substitute L to be 

equal to 1 by omega naught square C and then we will get this term. 

Now, let us study the behavior of the input impedance of a series RLC circuit or a series RLC 

resonator near it is resonance frequency. So, this expression Zin is equal to R plus j omega L 

omega square minus omega naught square divided by omega square that we have already seen. 

So, what do we can do in the vicinity of the resonance? We can expand this term omega square 

minus omega naught square is equal to omega minus omega naught into omega plus omega 

naught. 

Now, we write omega minus omega naught as delta omega and when we are close to the 

resonance omega plus omega naught can be written as 2 omega and therefore small delta omega 

we can write Z in is equal to R plus j omega L into 2 omega delta omega by omega square 

which becomes approximately equal to R plus j2 delta omega L and if we substitute from here 

L equal to R Q naught by omega naught then we get approximate expression for Zin which is 

given by R plus j2 delta omega R Q naught by omega naught. 

Now, this form of representation of the input impedance near it is resonant frequency this 

expression is a very useful expression, and we will make use of this expression in our later 

analysis of transmission line resonators.  
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Let us now consider half power fractional bandwidth of the resonator 

We have 𝑃𝑖𝑛 =
1

2
𝑉𝐼∗ =

1

2
𝑍𝑖𝑛 |

𝑉

𝑍𝑖𝑛
|
2

    Therefore,   𝑅𝑒(𝑃𝑖𝑛) =
1

2
R |

𝑉

𝑍𝑖𝑛
|
2

 

When 𝜔 = 𝜔0, 𝑍𝑖𝑛 = 𝑅 and 𝑅𝑒(𝑃𝑖𝑛)⌋𝜔=𝜔0
=

|𝑉|2

2𝑅
 

When |𝑍𝑖𝑛|
2 = 2𝑅2 that is |𝑍𝑖𝑛|=

𝑅

0.707
         𝑅𝑒(𝑃𝑖𝑛) =

1

2
 𝑅𝑒(𝑃𝑖𝑛)⌋𝜔=𝜔0

 

From 𝑍𝑖𝑛 ≅ 𝑅 +
𝑗2∆𝜔𝑅𝑄0

𝜔0
,                    |𝑍𝑖𝑛|

2 = 𝑅2 +
4∆𝜔2𝑅2𝑄0

2

𝜔0
2 = 2𝑅2 

⇒ (
2∆𝜔

𝜔0
)
2

=
1

𝑄0
2    Therefore, fractional bandwidth    

2∆𝜔

𝜔0
=

1

𝑄0
 

 

 

 



Let us now consider half-power fractional bandwidth of the resonator. Now, we have Pin is 

equal to half VI conjugates which can be written as half Zin V by Zin mod whole square and 

therefore the real part of Pin becomes real part of Zin is R. So, half R V by Zin mod square and 

when omega is equal to omega naught we have seen that Zin is equal to R and therefore real 

part of Pin at omega equal to omega naught this becomes equal to mod V square by 2R. 

And if you remember we have seen that mod Zin, we mark the line when mod Zin becomes 

equal to R by 0.707 that means root 2R. So, mod Zin square at those frequencies become 2R 

square and when mod Zin square becomes equal to 2R square, the real part of Pin becomes half 

of real part of Pin at omega equal to omega naught.  

So, that is why this frequency points are called half-power points, and in the plot shown we see 

that we have two such points, one below omega naught and one is above omega naught and 

from this expression Zin is equal to R plus j 2 delta omega R Q naught by omega naught we 

can find the modulus of Zin square and this becomes R square 4 delta omega square R square 

Q naught square by omega naught square and we can equate this to 2R square. 

So, once we do that we will get if you can take out R square common from here then R square 

will get cancel from both side, will be left with 1 here and when it is subtracted from here then 

we will get 4 delta omega square Q naught square by omega naught square is equal to 1, and 

therefore we can write 2 delta omega by omega naught whole square is equal to 1 by Q naught 

square and this quantity 2 delta omega by omega naught this quantity we defined as fractional 

bandwidth, and therefore we see that the fractional bandwidth is given by 1 by Q naught. 

So, higher the value of Q the fractional bandwidth will be narrower and we have seen that Q 

naught is given by omega naught L by R. So, if R increases, the power loss in the circuit 

increases Q will decrease and we will have larger fractional bandwidth whereas if R is very 

small then Q naught will be large and fractional bandwidth will be very small. 
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So, for a highly tune circuit or a very narrow band resonator, we will have large value of Q 

naught, and for that we will have R to be very small. 
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For the parallel RLC circuit shown in the figure: 

𝑍𝑖𝑛 =
1

(
1
𝑅 +

1
𝑗𝜔𝐿 + 𝑗𝜔𝐶)

=
1

(
1
𝑅 −

𝑗
𝜔𝐿

(1 − 𝜔2𝐿𝐶))

 

𝑍𝑖𝑛 =

1
𝑅 + 𝑗 (

1 − 𝜔2𝐿𝐶
𝜔𝐿 )

(
1
𝑅)

2

+ (
1 − 𝜔2𝐿𝐶

𝜔𝐿 )
2 

𝑅𝑒(𝑍𝑖𝑛 ) attains its maximum value 𝑅 at the resonance frequency  

𝜔0 =
1

√𝐿𝐶
  

 

 

Let us now consider the properties of parallel RLC circuit near its resonance. So, the parallel 

RLC circuit is shown in the figure. For this type of a circuit we can write Zin is equal to 1 by, 

1 by R plus 1 by j omega L plus j omega C and this can be written as 1 by 1 by R minus j by 

omega L 1 minus omega square LC. Now, we can find out the real and imaginary parts of Zin 

if we multiply the numerator and the denominator by the complex conjugate of this term. 

Now, real Zin will attend it is maximum value R at the resonant frequency, and at the resonant 

frequency the imaginary Zin will be zero and this resonant frequency is given by omega naught 

which is equal to 1 by root LC. Now this plot show the roughly the nature of variation of real 

part of Zin and imaginary part of Zin with frequency.  



And we see that for a parallel RLC circuit below the resonant frequency omega naught it will 

be inductive in nature and above omega naught it will be capacitive in nature. In a series RLC 

circuit, we saw that below resonant frequency omega naught the circuit behaves like a 

capacitive circuit while above resonant frequency it is an inductive circuit.\ 
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For such parallel RLC circuit 

𝑄0 = 𝜔0𝑅𝐶 =
𝑅

𝜔0𝐿
 

Near resonance 𝜔 = 𝜔0 + ∆𝜔 

𝑍𝑖𝑛 = (
1

𝑅
+ 𝑗𝜔𝐶 +

1

𝑗𝜔𝐿
)
−1

= (
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗(𝜔0 + ∆𝜔)𝐿
)
−1

 

𝑍𝑖𝑛 = (
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿(1 + ∆𝜔 𝜔0⁄ )
)
−1

 

When ∆𝜔 𝜔0⁄ ≪ 1 we can use the approximation 1 (1 + ∆𝜔 𝜔0⁄ ) ≅ 1 − ∆𝜔 𝜔0⁄⁄  

𝑍𝑖𝑛 ≅ (
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿
−

∆𝜔

𝑗𝜔0
2𝐿
)

−1

 

 

 



Now, Q naught the unloaded Q factor for such resonant circuit can be found out and Q naught 

will be equal to omega naught RC and which is also R by omega naught L. Near it is resonance 

the frequency angular frequency omega can be written as omega naught plus delta omega and 

Zin once we substitute omega is equal to omega naught plus delta omega can be expressed in 

this form.  

And if we plot the variation of magnitude of Zin with respect to omega by omega naught then 

we will have the maximum value of the magnitude of Zin at omega equal to omega naught that 

means when this ratio is 1, and we will see that half-power points will be for magnitude of Zin 

omega to be equal to 0.707 of it is maximum value that is R. Now, this term we can do some 

approximation particularly because of the fact that delta omega by omega naught is very, very 

less as compared to 1 when we are operating the circuit near the resonant frequency omega 

naught. 

So, what we can do? This term 1 by 1 plus delta omega by omega naught, this can be 

approximated as 1 minus delta omega by omega naught. So, once we substitute this 

approximation then we get Zin to be equal to 1 by R plus j omega naught C plus j delta omega 

C plus 1 by j omega naught L minus delta omega by j omega naught square L entire thing raised 

to the power minus 1. 
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𝑍𝑖𝑛 = (
1

𝑅
+ 𝑗𝜔0𝐶 + 𝑗∆𝜔𝐶 +

1

𝑗𝜔0𝐿
−

∆𝜔

𝑗𝜔0
2𝐿
)

−1

 

𝑍𝑖𝑛 = (
1

𝑅
+ 𝑗∆𝜔𝐶 +

𝑗∆𝜔

𝜔0
2𝐿
)

−1

 

𝑍𝑖𝑛 = (
1

𝑅
+ 𝑗∆𝜔𝐶 + 𝑗∆𝜔𝐶)

−1

=
𝑅

1 + 𝑗2∆𝜔𝑅𝐶
 

Since 𝑄0 = 𝜔0𝑅𝐶, 

𝑍𝑖𝑛 =
𝑅

1 + 𝑗2∆𝜔𝑄0 𝜔0⁄
 

 



 

Now, this is the form of Zin we have seen, and these two terms j omega naught C plus 1 by j 

omega naught L when to combine it will give 1 minus omega naught square LC and therefore 

these two term will cancel out. So, we find that this j omega naught C and 1 by j omega naught 

L when combining they will give term like 1 minus omega square LC and therefore it will 

become sum of these two terms will become 0 and we will be left with Zin equal to 1 by R plus 

j delta omega C plus j delta omega by omega naught square L whole raised to the power minus 

1.  

Now, once we substitute omega square is equal to 1 by LC here we will see that this term j 

delta omega by omega naught square L will be reduced to j delta omega C and therefore Zin 

can be written as 1 by R plus j delta omega C from here and another j delta omega C from here 

whole raised to the power minus 1 and therefore it can be written as R divided by 1 plus j2 

delta omega RC. 

Since we have Q naught is equal to omega naught RC, therefore, we can now write Zin equal 

to R divided by 1 plus j2 delta omega Q naught by omega naught. So, this expression of input 

impedance gives the input impedance of the parallel resonant circuit near it is resonance, and 

you can see that this expression also includes Q naught the unloaded Q factor and also omega 

naught the angular resonant frequency. 
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𝑅𝑒(𝑃𝑖𝑛) =
1

2
𝑉 (

𝑉

𝑅
)
∗

=
1

2

|𝑉|2

𝑅
=
1

2
|𝐼|2|𝑍𝑖𝑛|

2
1

𝑅
 

At resonance 𝑅𝑒(𝑃𝑖𝑛)|𝜔=𝜔0
=

1

2
|𝐼|2𝑅 

Therefore,  
𝑅𝑒(𝑃𝑖𝑛)

𝑅𝑒(𝑃𝑖𝑛)|𝜔=𝜔0

=
|𝑍𝑖𝑛|

2

𝑅2
 

For 
𝑅𝑒(𝑃𝑖𝑛)

𝑅𝑒(𝑃𝑖𝑛)|𝜔=𝜔0

 to become 
1

2
,       

𝑅2

2
= |𝑍𝑖𝑛|

2 

From 𝑍𝑖𝑛 =
𝑅

1+𝑗2∆𝜔𝑄0 𝜔0⁄
,       2∆𝜔𝑄0 𝜔0⁄ = 1 

Therefore, fractional bandwidth  2∆𝜔 𝜔0⁄ = 1 𝑄0⁄  

 

 

Now, let us develop the expression for the fractional bandwidth. From the parallel RLC circuit, 

we see that real part of P in input power is equal to half V the voltage it is a parallel RLC circuit 

so the voltage will be same across all the elements. So, it is half V, V by R conjugate and V by 

R is essentially the current through the resistance and therefore we can write it half mod V 

square by R and which is equal to half I square mod of Zin square divided by R because V is 

written as I into Zin. 

Now, at resonance that means when omega equal to omega naught real part of Pin becomes 

equal to half mod of I square R because we have seen that at omega equal to omega naught 

mod Zin become equal to R and therefore we can now write real part of Pin divided by real part 

of Pin at omega equal to omega naught this can be written as mod of Zin square divided by R 



square and for this quantity to become half because we are talking of half-power bandwidth we 

must have R square by 2 equal to mod of Zin square. 

Now, we already have an expression for the approximate input impedance of the parallel RLC 

circuit near it is resonant frequency and therefore we can write from Zin is equal to R divided 

by 1 plus j 2 delta omega Q naught by omega naught from this expression we can see that mod 

Zin square will become R square by 2 when we have 2 delta omega Q naught by omega naught 

is equal to 1. 

And the fractional bandwidth is given by 2 delta omega by omega naught, and therefore once 

again, we find that just as the case of series RLC circuit the fractional bandwidth 2 delta omega 

by omega naught is equal to 1 by Q naught. That means for higher Q the fractional bandwidth 

will be very less and for lower Q we will have larger fractional bandwidth. 
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Let the loading of the external circuit be represented by a load resistance 𝑅𝐿 and the Q of the 

external circuit by 𝑄𝑒.  

Let 𝑄𝐿 be the 𝑄of the loaded circuit. 

For series RLC circuit 𝑄𝐿 = 𝜔0
𝐿

𝑅+𝑅𝐿
     Therefore, 

1

𝑄𝐿
=

𝑅+𝑅𝐿

𝜔0𝐿
=

1

𝑄0
+

1

𝑄𝑒
 

Similarly, for a parallel RLC circuit 𝑅 and 𝑅𝐿are in parallel and  

𝑄𝐿 =
𝑅𝑅𝐿

𝜔0(𝑅+𝑅𝐿)𝐿
   Therefore, 

1

𝑄𝐿
=

𝜔0(𝑅+𝑅𝐿)𝐿

𝑅𝑅𝐿
=

1

𝑄𝑒
+

1

𝑄0
 

 

 



Now, so far we were discussing Q naught the unloaded Q. Let us now consider another form 

of quality factor, which is called the Loaded Q. The unloaded Q of a circuit Q naught is the 

quality factor of the circuit without any external loading. In practice, external circuitry that will 

be connected to the resonator will produce loading effect and let us see how we can take this 

loading effect into account. 

Let us represent the loading of the external circuit by a load resistance RL and Q of the external 

circuit by Qe and QL with a Q of the loaded circuit. Now, when we consider series RLC circuit 

our external resistance RL will come in series with the resistance of the RLC circuit R and 

therefore the effective resistance will be R plus RL and therefore by definition of Q we can 

write QL that of the loaded circuit is equal to omega naught L divided by R plus RL. 

If you write 1 by QL then it becomes R plus RL divided by omega naught L, and this term R 

divided by omega naught L can be written as 1 by Q naught and RL divided by omega naught 

L can be written as 1 by Qe. So, the Q of the loaded RLC series RLC circuit 1 by QL is 1 by Q 

naught the unloaded Q plus 1 by Qe the Q of the external circuit. Let us now consider the 

parallel RLC circuit. 

In case of parallel RLC circuit, the external resistance RL will come in parallel with R and the 

effective resistance will now be R into RL divided by R plus RL and therefore for a parallel 

circuit QL can be written as RR L divided by omega naught R plus RL into L and if we write 1 

by QL can be written as omega naught R plus RL into L divided by RR L and when this is 

separated then we will get omega naught L by RL which is 1 by Qe plus omega naught L by R 

which is 1 by Q naught. 

So, once again we find that for a parallel RLC circuit also 1 by QL is equal to 1 by Qe plus 1 by 

Q naught. So, once we know the unloaded Q of the series or parallel RLC circuit and we know 

the external loading that means RL we can find out the Q of the loaded circuit. So, we have 

studied series RLC and parallel RLC circuits and particularly how such circuits behave near 

their resonant frequency.  

Next we will see how transmission line sections either short or open can act as resonators and 

also near the resonant frequency of how we can model this type of transmission line resonators 

by equivalent RLC circuit.  


